首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present studies were designed to investigate the sites of PGE(2), prostacyclin and leptin formation in human adipose tissue. Most of the PGE(2) and prostacyclin formation by adipose tissue explants from obese humans after 48 h in primary culture was due to blood vessels and other tissues not digested by collagenase. However, there was appreciable PGE(2) formation by adipocytes over a 48 h incubation and leptin formation was only seen in adipocytes. An increase in COX-2 immunoreactive protein was also seen after incubation of isolated human adipocytes for 48 h. The release of PGE(2) by adipocytes incubated for 48 h was about 4% that by intact adipose tissue explants while the release of prostacyclin was about 1.5% that by tissue. However, in a different experimental design where PGE(2) formation was measured over 2 h in the presence of 20 microM arachidonic acid the formation of PGE(2) by adipocytes after 48 h prior incubation in primary culture was 38% of that by tissue explants. Dexamethasone enhanced leptin release by adipocytes while inhibiting PGE(2) release and COX-2 up-regulation. The mechanisms involved in up-regulation of COX-2 activity during primary culture of adipocytes and the inhibition of this by dexamethasone do not appear to involve p38 MAPK or p42-44 MAPK. Interleukin I(beta) further enhanced PGE(2) formation by adipocytes but did not affect leptin formation. In conclusion, these data indicate that leptin release is exclusively a function of adipocytes while prostanoids are made by both adipocytes and the other cells present in human adipose tissue  相似文献   

2.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40–49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-α), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle4, D-Phe7]-α -MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-α upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R–effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   

3.
Haptoglobin is a putative adiposity marker because its concentration in blood is increased in obese humans. The present studies examined haptoglobin release by explants of adipose tissue in primary culture. Haptoglobin was released by explants of human visceral and subcutaneous adipose tissue at a nearly linear rate over 48 h. Explants of visceral adipose tissue released more haptoglobin than did explants of subcutaneous adipose tissue. The release of haptoglobin was quite variable, but there was a close correlation between haptoglobin release by visceral adipose tissue and that by explants of subcutaneous tissue from the same individual. Dexamethasone and niflumic acid, a cyclooxygenase-2 inhibitor, both inhibited haptoglobin release. There was release of haptoglobin by both isolated adipocytes and the adipose tissue matrix remaining after collagenase digestion of human adipose tissue. However, the amount of haptoglobin released by human adipose tissue explants in primary culture was quite low in relationship to the circulating level of haptoglobin.  相似文献   

4.
IL-8 is released from human adipose tissue. Circulating IL-8 is increased in obese compared with lean subjects and is associated with measures of insulin resistance, development of atherosclerosis, and cardiovascular disease. We studied 1) the production and release of IL-8 in vitro from paired samples of subcutaneous (SAT) and visceral (VAT) adipose tissue and 2) the production of IL-8 from whole adipose tissue, isolated adipocytes, and nonfat cells of adipose tissue. IL-8 release from VAT was fourfold higher than from SAT (P < 0.05), and IL-8 mRNA was twofold higher in VAT compared with SAT (P < 0.01). Dexamethasone (50 nM) attenuated IL-8 production by 50% (P < 0.05), and IL-1beta (2 microg/l) increased IL-8 production up to 15-fold (P < 0.001). IL-8 release from whole SAT explants correlated with body mass index (BMI; r = 0.78; P < 0.001), as did IL-8 release from nonfat cells (r = 0.79; P < 0.001). However, no correlation was found between IL-8 release from the fraction of isolated adipocytes and BMI (r = 0.01). In conclusion, we demonstrated an increased release of IL-8 from VAT compared with SAT. Furthermore, our data suggest that the observed elevation in circulating levels of IL-8 in obese subjects is due primarily to the release of IL-8 from nonfat cells from adipose tissue. The high levels of IL-8 release from human adipose tissue and accumulation of this tissue in obese subjects may account for some of the increase in circulating IL-8 observed in obesity.  相似文献   

5.
Objective: Resistin was recently identified as a hormone secreted by adipocytes that is under hormonal and nutritional control. This hormone has been suggested to be the link between obesity and type 2 diabetes. The aim of this study was to assess the influence of gender, gonadal status, thyroid hormones, pregnancy, and food restriction on resistin mRNA levels in adipose tissue of rats. Research Methods and Procedures: We have determined resistin mRNA expression by Northern blot analysis in all experimental sets. Results: Resistin mRNA expression is influenced by age, with the highest hormone levels existing at 45 days after birth and decreasing thereafter. Resistin mRNA expression is higher in men than in women. Moreover, we studied the effect of orchidectomy and ovariectomy in rats of different ages and showed that gonadal hormones increase adipose tissue resistin mRNA expression in male rats. Resistin is also regulated by thyroid hormones; it is severely decreased in hyperthyroid rats. Our results clearly show that chronic food restriction (30% of ad libitum food intake) led to a decrease in adipose tissue mRNA levels in normal cycling female rats and pregnant rats. In pregnancy, resistin mRNA levels were enhanced particularly at midgestation. Discussion: Our observations indicate that resistin is influenced by gender, gonadal status, thyroid hormones, and pregnancy. These findings suggest that resistin could explain the decreased insulin sensitivity during puberty and could be the link between sex steroids and insulin sensitivity. Moreover, resistin could mediate the effect of thyroid hormones on insulin resistance and the state of insulin resistance present during pregnancy.  相似文献   

6.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40-49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-alpha), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle(4), D-Phe(7)]-alpha-MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-alpha upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R-effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   

7.
Zhou L  Sell H  Eckardt K  Yang Z  Eckel J 《FEBS letters》2007,581(22):4303-4308
Adipocyte-derived factors might play a role in the development of hepatic insulin resistance. Resistin was identified as an adipokine linking obesity and insulin resistance. Resistin is secreted from adipocytes in rodents but in humans it was proposed to originate from macrophages and its impact for insulin resistance has remained elusive. To analyze the role of adipokines in general and resistin as a special adipokine, we cultured the human liver cell line HepG2 with adipocyte-conditioned medium (CM) containing various adipokines such as IL-6 and MCP-1, and resistin. CM and resistin both induce insulin resistance with a robust decrease in insulin-stimulated phosphorylation of Akt and GSK3. Insulin resistance could be prevented by co-treatment with troglitazone but not by co-stimulation with adiponectin. As human adipocytes do not secrete resistin, HepG2 cells were also treated with resistin added into CM. CM with resistin addition induced stronger insulin resistance than CM alone pointing to a specific role of resistin in the initiation of hepatic insulin resistance in humans.  相似文献   

8.
Resistin is an adipokine whose physiologic role in obesity, type II diabetes mellitus, and inflammatory diseases has been a subject of debate because while it is expressed in adipocytes and adipose tissue in mouse, it is expressed in leukocytes, such as macrophages, in human. In the present study, we attempt to define the effect of resistin on human dendritic cells (DCs) derived from CD14+ monocytes. When DCs were stimulated with lipoteichoic acid (LTA) and treated with various concentrations of resistin, antigen-uptake process and the endocytic capacity of DCs were decreased. It is intriguing that resistin attenuated cytokine production in LTA-primed DCs. Consequently, T cell activity was reduced when lymphocytes were mixed with Staphylococcus aureus-primed autologous DCs treated with resistin compared to S. aureus-primed DCs without resistin. Our results suggest that resistin interferes with the efficacy of immune responses activated by Gram-positive bacterial infection in human DCs.  相似文献   

9.
Resistin, a product of white adipose tissue, is postulated to induce insulin resistance in obesity and regulate adipocyte differentiation. The aim of this study was to examine resistin gene expression in adipose tissue from mice bearing the MAC16 adenocarcinoma, which induces cancer cachexia with marked wasting of adipose tissue and skeletal muscle mass. MAC16-bearing mice lost weight progressively over the period following tumour transplantation, while the weight of control mice remained stable. Leptin mRNA in gonadal fat was 50 % lower in MAC16 mice than in controls (p < 0.05). Plasma insulin concentrations were also significantly lower in the MAC16 group (p < 0.05). However, resistin mRNA level in gonadal fat in MAC16 mice was similar to controls (94 % of controls). Thus, despite severe weight loss and significant falls in leptin expression and insulin concentration, resistin gene expression appears unchanged in white adipose tissue of mice with MAC16 tumour. Maintenance of resistin production may help inhibit the formation of new adipocytes in cancer cachexia.  相似文献   

10.
The relative release in vitro of endothelin‐1, zinc‐α2‐glycoprotein (ZAG), lipocalin‐2, CD14, RANTES (regulated on activation, normal T cell expressed and secreted protein), lipoprotein lipase (LPL), osteoprotegerin (OPG), fatty acid–binding protein 4 (FABP‐4), visfatin/PBEF/Nampt, glutathione peroxidase‐3 (GPX‐3), intracellular cell adhesion molecule 1 (ICAM‐1), and amyloid A was examined using explants of human adipose tissue as well as the nonfat cell fractions and adipocytes from obese women. Over a 48‐h incubation the majority of the release of LPL was by fat cells whereas that of lipocalin‐2, RANTES, and ICAM‐1 was by the nonfat cells present in human adipose tissue. In contrast appreciable amounts of OPG, amyloid A, ZAG, FABP‐4, GPX‐3, CD14, and visfatin/PBEF/Nampt were released by both fat cells and nonfat cells. There was an excellent correlation (r = 0.75) between the ratios of adipokine release by fat cells to nonfat cells over 48 h and the ratio of their mRNAs in fat cells to nonfat cells at the start of the incubation. The total release of ZAG, OPG, RANTES, and amyloid A by incubated adipose tissue explants from women with a fat mass of 65 kg was not different from that by women with a fat mass of 29 kg. In contrast that of ICAM‐1, FABP‐4, GPX‐3, visfatin/PBEF/Nampt, CD14, lipocalin‐2, LP, and endothelin‐1 was significantly greater in tissue from women with a total fat mass of 65 kg.  相似文献   

11.
Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation.  相似文献   

12.
Adipose tissue-derived cytokines are presumably involved in obesity-associated pathologies including type 2 diabetes and atherosclerosis. Here we studied the lipopolysaccharide (LPS)-induced expression dynamics of tumor necrosis factor-alpha (TNFalpha), interleukin-6 (IL-6), IL-8 and IL-10 in human adipose tissue biopsies, in preadipocyte-derived adipocytes, and in mesenchymal stem cell (MSC)-derived adipocytes. TNFalpha, IL-6, IL-8 and IL-10 secretions by adipose tissue explants were increased 5.5-, 19.5-, 3.5- and 12.5-fold, respectively, by LPS (1 microg/mL) administration. Concordantly, IL-6 and IL-8 release was dose-dependently induced in MSC-derived adipocytes by LPS (>10 pg/mL). In contrast, TNFalpha and IL-10 remained undetectable even at the highest LPS dose (1 microg/mL) after 24h. In MSC- and preadipocyte-derived adipocytes, respectively, exposure to LPS evoked a weak and transient induction of TNFalpha mRNA whereas induction of IL-6 and IL-8 mRNA were pronounced and sustained for at least 24h. Basal glucose uptake, lipolysis and IL-6 mRNA were induced by exogenous TNFalpha (10 ng/mL) but not by IL-6 (10 ng/mL), IL-8 (100 ng/mL) and IL-10 (20 ng/mL). In this adipocyte model TNFalpha induces well known metabolic effects, but together with previous reports these data suggest that inflammation-induced TNFalpha may derive from non-adipocyte sources in adipose tissue, likely to be macrophages.  相似文献   

13.
Resistin, a small cysteine rich protein secreted by adipocytes, has been proposed to be a link between obesity and type II diabetes by modulating the insulin signaling pathway and thus inducing insulin resistance. Resistin protein, with 11 cysteine residues, was not significantly homologous at the amino acid level to any other known cysteine rich proteins. Resistin cDNA derived from human subcutaneous adipose tissue was expressed in Escherichia coli as an N-terminal six-His-tag fusion protein. The overexpressed recombinant resistin was purified to homogeneity from inclusion bodies, after solubilization in 8 M urea, using a metal affinity column. While MALDI-TOF mass spectrometric analysis of the purified protein generated a single peak corresponding to the estimated size of 11.3 kDa, the protein exhibited a concentration-dependent oligomerization which is evident from size exclusion chromatography. The oligomeric structure was SDS-insensitive but beta-mercaptoethanol-sensitive, pointing to the importance of disulfide linkages in resistin oligomerization. Estimation of free cysteine residues using the NBD-Cl assay revealed a concentration- and time-dependent increase in the extent of formation of disulfide linkages. The presence of intermolecular disulfide bond(s), crucial in maintaining the global conformation of resistin, was further evident from fluorescence emission spectra. Circular dichroism spectra revealed that recombinant resistin has a tendency to reversibly convert from alpha-helical to beta-sheet structure as a direct function of protein concentration. Our novel observations on the biophysical and biochemical features of human resistin, particularly those shared with prion proteins, may have a bearing on its likely physiological function.  相似文献   

14.
Inhibition by insulin of resistin gene expression in 3T3-L1 adipocytes.   总被引:33,自引:0,他引:33  
Expression of the gene encoding resistin, a low molecular weight protein secreted from adipose tissue postulated to link obesity and type II diabetes, was examined in 3T3-L1 adipocytes. Resistin mRNA was detected in 3T3-L1 cells by day 3 following induction of differentiation into adipocytes; by day 4 the level of resistin mRNA peaked and remained high. The PPARgamma activators, rosiglitazone or darglitazone, reduced the level of resistin mRNA. Dexamethasone upregulated resistin mRNA level, but no effect was observed with the beta(3)-adrenoceptor agonist, BRL 37344. A substantial reduction in resistin mRNA level was observed with insulin, which induced decreases at physiological concentrations. Insulin may be a major inhibitor of resistin production, and this does not support a role for resistin in insulin resistance.  相似文献   

15.
Resistin is a recently discovered hormone that is exclusively expressed in adipose tissue. Its expression in rodents was reported to be elevated or suppressed in genetic and diet-induced obesity, respectively. Resistin treatment impaired glucose tolerance and insulin action. Immunoneutralization of resistin improved insulin sensitivity, while thiazolidinedione treatment reduced resistin expression. Therefore, resistin could play a critical role in the development of obesity and type 2 diabetes. In this study were determined resistin plasma levels in humans suffering from type 1 and type 2 diabetes and in healthy controls. Plasma levels of resistin in healthy controls were 38.78 ng/ml. They were not statistically different in individuals with a broad BMI range. Resistin plasma levels in type 2 diabetes were 38.7 ng/ml, and 39.4 ng/ml in type 1 diabetes. Thiazolidinedione treatment did not influence resistin plasma levels. We conclude from our data: 1. resistin can be detected in human plasma, 2. plasma resistin levels are not different in type 1 and type 2 diabetes.  相似文献   

16.
17.
嗜中性粒细胞是人抵抗素表达的主要细胞   总被引:1,自引:0,他引:1  
抵抗素(resistin)是小鼠白色脂肪组织大量表达的富含半胱氨酸的 分泌型蛋白.近年研究发现,人与啮齿类动物的抵抗素组织表达分布存在很 大差异.小鼠抵抗素主要在白色脂肪组织表达,而人抵抗素主要在单核细 胞/巨噬细胞表达,且在骨髓组织中大量表达,但目前骨髓中的细胞定位还 不清楚.本研究的目的是明确成人骨髓及外周血白细胞中抵抗素表达细胞 的类型.免疫荧光法检测骨髓中抵抗素表达细胞,结果显示,抵抗素主要表 达在细胞核呈杆状和分叶核状的成熟粒细胞中,其中杆状核粒细胞表达较 高,分叶核粒细胞表达减弱.Anti-hresistin IgG-Biotin-PE单色荧光流 式细胞术分选外周血白细胞中抵抗素表达细胞后经瑞氏化学染色,结果显 示,抵抗素表达细胞主要为杆状和分叶核状的嗜中性粒细胞,还有少量嗜酸 性粒细胞,且抵抗素蛋白分布在细胞质中. RT-qPCR结果在RNA水平上证明, 人抵抗素在嗜中性粒细胞中大量表达.Anti-hresistin IgG-FITC和anti- HNL IgG-Biotin-PE 双色荧光流式细胞术进一步证明,抵抗素的主要表达细 胞为成熟的嗜中性粒细胞.嗜中性粒细胞在机体免疫防御中起重要作用, 人骨髓及外周血中抵抗素主要在成熟嗜中性粒细胞中表达,这一研究结论 为人抵抗素与炎症反应的关联性及其功能的进一步研究奠定了基础.  相似文献   

18.
Adipose cells are extrathyroidal targets of thyroid-stimulating hormone (TSH). TSH stimulates interleukin-6 (IL-6) release from adipocytes. We examined TSH responsiveness as a function of stage of differentiation or adipose tissue depot in cultured adipose cells and determined the effect of TSH on extrathyroidal IL-6 production in vivo. Stromal preadipocytes, isolated from human abdominal subcutaneous or omental adipose tissue, and their differentiated counterparts were studied. IL-6 protein concentration in the medium was measured after TSH stimulation. Basal IL-6 release was greater for preadipocytes than differentiated adipocytes, whether derived from subcutaneous or omental fat depots. A depot-dependent effect (omental > subcutaneous) on basal IL-6 release was observed for preadipocytes (1.6-fold, P < 0.05); a similar trend for differentiated adipocytes was not significant (6.2-fold, P > 0.05). IL-6 responsiveness to TSH was observed upon differentiation, but only for subcutaneous adipocytes (1.9-fold over basal, P < 0.001). To determine if TSH could stimulate IL-6 release from extrathyroidal tissues in vivo, we measured serum IL-6 levels from five thyroidectomized patients who received recombinant human (rh) TSH and found that levels increased by threefold on days 3 and 4 (P < 0.05) after its administration. Our data demonstrate that stage of differentiation and fat depot origin affect basal and TSH-stimulated IL-6 release from adipose cells in culture. Furthermore, rhTSH elevates serum IL-6 response in thyroidectomized patients, indicating an extrathyroidal site of TSH action.  相似文献   

19.
Resistin is a recently discovered polypeptide that induces insulin resistance in rodents. While in rodents resistin is predominantly expressed in adipocytes, in humans peripheral blood mononuclear cells (PBMC) seem to a be a major source of resistin. In the present study, we show that in human PBMC resistin mRNA expression-determined by fluorescence-based real-time polymerase chain reaction-is strongly increased by the proinflammatory cytokines interleukin (IL)-1, IL-6, tumor necrosis factor alpha (TNF-alpha), and also by lipopolysaccharides (LPS), respectively, while no effect was found by interferon-gamma (IFN-gamma) or leptin. Our results suggest that in humans resistin may be a link in the well-known association between inflammation and insulin resistance.  相似文献   

20.
Objective: In an attempt to clarify the conflicting data on resistin mRNA expression and protein analysis by western blotting in adipose tissue and serum, we developed a sensitive enzyme‐linked immunosorbent assay (ELISA) for direct measurement of mouse resistin. Research Methods and Procedures: We developed polyclonal antibodies directed to the N (21 to 40) and C (79 to 91) termini of mouse resistin. Then, affinity‐purified anti‐C‐terminal resistin immunoglobin G (IgG) was biotinylated. ELISA was based on the sandwiching of antigen between antibody IgG coated on polystyrene plates and biotinylated antibody IgG. The bound biotinylated antibody was quantified with streptavidin‐linked horseradish peroxidase. Results: New ELISA can measure a concentration as low as 0.5 ng/mL of recombinant mouse resistin and is sensitive and specific enough to measure resistin protein in various adipose tissues and in sera. In normal mice, decreases in resistin concentrations in both white adipose tissue and serum were age dependent during 6 to 24 weeks of development. Resistin concentrations were significantly higher in omental adipose tissue in comparison with perirenal and abdominal adipose tissues and were 2‐ to 5‐fold higher in females than males during the growth period. ob/ob mice had significantly lower resistin concentrations than the control mice in both sera and the white adipose tissues, particularly in the omental fat. The treatment by testosterone, but not progesterone or β‐estradiol, in cultured adipocytes reduces resistin protein levels in a dose‐dependent manner. Discussion: New sensitive ELISA for mouse resistin clarified that the resistin concentrations in normal mice were markedly elevated in the omental adipose depots as compared with the perirenal and abdominal adipocyte depots and significantly elevated compared with adipose tissues in genetically obese mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号