共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pH on stomatal sensitivity to abscisic acid 总被引:2,自引:3,他引:2
Abstract. The sensitivity of stomata of Commelina communis L. to abscisic acid (ABA) was evaluated by analysing the initial rates of response to the compound at different hormone concentrations. This was carried out at pH 6.8 and pH 5.5. The data were modelled and statistically analyzed by means of a computer program employing non-linear regression techniques and step-down analysis of variance. The response kinetics as quantified in terms of three sensitivity parameters were found to differ significantly between the two pH values. This finding is discussed in relation to previous research on purified ABA-binding proteins. 相似文献
2.
Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals 总被引:1,自引:0,他引:1 下载免费PDF全文
The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apoplast of the shoot in response to environmental perturbation. Xylem sap leaving the root was generally more acidic than sap in the midrib and the apoplast of the leaf. Increasing the transpiration rate of both intact plants and detached plant parts resulted in more acidic leaf apoplast pHs. Experiments with inhibitors suggested that protons are removed from xylem sap as it moves up the plant, thereby alkalinizing the sap. The more rapid the transpiration rate and the shorter the time that the sap resided in the xylem/apoplastic pathway, the smaller the impact of proton removal on sap pH. Sap pH of sunflower (Helianthus annuus) and Commelina communis did not change significantly as soil dried, while pH of tomato (Lycopersicon esculentum) sap increased as water availability in the soil declined. Increasing the availability of nitrate to roots also significantly alkalinized the xylem sap of tomato plants. This nitrogen treatment had the effect of enhancing the sensitivity of the stomatal response to soil drying. These responses were interpreted as an effect of nitrate addition on sap pH and closure of stomata via an abscisic acid-based mechanism. 相似文献
3.
Abstract Epidermal strips of Commelina communis with ‘isolated’ stomata were incubated on Trizma-maleate buffer containing 0-500 mM KCL, with or without 10?4 M ABA, for 2.5 h. The resulting stomatal apertures indicate that there is no absolute requirement for live epidermal and subsidiary cells for ABA-mediated closure. This implies that ABA has a direct effect on influx or efflux of K+ into or out of the guard cells rather than on uptake of K+ by the subsidiary cells. The possible in vivo role of subsidiary cells in stomatal closure is discussed. 相似文献
4.
Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits 总被引:8,自引:2,他引:8
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves. 相似文献
5.
Summary Closure of stomata caused by low (10-7M) concentrations of abscisic acid (ABA) is specific for cis-trans ABA, and is initiated within 5 minutes. Upon withdrawal of the hormone supply, reopening starts within 5 minutes. Gas analysis of leaves treated with ABA or DCMU allows one to distinguish effects on the stomatal apparatus from inhibition of photosynthesis and to conclude that ABA acts on stomata directly. 相似文献
6.
Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N6-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some post-release effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [14C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of 14C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total 14C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of 14C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect 14C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.Abbreviations and symbols ABA
abscisic acid
- PA
phaseic acid
-
w
water potential 相似文献
7.
Li Qing Tian Qianqian Zhang Yue Niu Mengxue Yu Xiaoqian Lian Conglong Liu Chao Wang Hou-Ling Yin Weilun Xia Xinli 《Plant Cell, Tissue and Organ Culture》2022,148(2):231-245
Plant Cell, Tissue and Organ Culture (PCTOC) - Abscisic acid (ABA), a key plant hormone that regulates plant growth development and stress response, is recognized and bound by ABA Receptor... 相似文献
8.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V
m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV
m. Calculated atV
m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA. 相似文献
9.
After a pretreatment of 2 h exposure to a solution containing 2 × 10−4 M ABA, reopening of stomata occurred in epidermal strips of Vicia faba L. cv. Cavalier on an ABA-free incubation solution. After pretreatment with exogenous ABA stomatal apertures were greater when higher levels of KCl were incorporated into the solution used for reopening. Prolonged exposure to exogenous ABA (14 h) did not prevent stomatal reopening upon transfer to ABA-free solutions. However, for both ABA and ABA-free pretreatments, prolonged incubation (1 day after removal of epidermis) resulted in enhanced stomatal apertures when the epidermal strips were exposed to light. This effect was lost 2 days after removal of the epidermis and opening did not occur after 3 days. Epidermal strips containing endogenous ABA were obtained from wilted leaves. Reopening was greatly reduced by the endogenous ABA treatment, and variation of KCl concentration in the incubation solution had little effect on stomatal aperture. It is postulated that during wilting endogenous ABA becomes reversibly bound without loss of activity for a longer period than is obtained using exogenous ABA. The presence of other unidentified compounds may be involved in this process. 相似文献
10.
The relationship of abscisic acid metabolism to stomatal conductance in Douglas-fir during water stress 总被引:3,自引:0,他引:3
Changes in abscisic acid and its metabolites were followed through two drought cycles in Pseudotsuga menziesii (Mirb.) Franco seedlings to determine the metabolic pathway of the hormone and its relationship to branch (stomatal) conductance. Three year-old, intact seedlings were water-stressed, watered, and restressed over a period of 30 days. Water potential was sampled with a pressure chamber and branch conductance with a steady-state porometer. Needle content of abscisic acid and 2- trans -abscisic acid and their saponifiable conjugates were quantified with gas-liquid chromatography. The typical water potential threshold in branch conductance, decreasing abruptly at -2.0 MPa, corresponded to an increase in abscisic acid content of 240 ng g−1 . The relationship between abscisic acid and water potential was not definitive, though the general trend was an increase in the hormone with intensifying stress until water potential was -5.0 MPa, when concentration sharply declined. No adjustment to stress was observed in the relationships, but stress during the second cycle progressed more slowly. A linear relationship between abscisic acid and its conjugate indicated the importance of the interconversion of the two compounds for storage and supply of the free acid. 相似文献
11.
Short-and medium-term stresses (1 and 24 h, respectively) wereapplied to detached leaves of Commelina communis L., resultingin both cases in a final leaf cell water potential ( 相似文献
12.
Effects of abscisic acid and its derivatives on stomatal closing 总被引:2,自引:0,他引:2
Abscisic acid and its derivatives, formed with the terminalcarboxyl group replaced respectively by aldehyde, hydroxymethyland methyl groups, were examined for their effects on stomatalclosing. Only the derivative with the methyl group was inactive.The acid and the other two derivatives were very active forclosing stomata at low concentrations. (Received January 28, 1975; ) 相似文献
13.
Summary (RS)-Abscisic acid, a natural plant hormone, has been found to inhibit photosynthesis in both detached and attached primary wheat leaves. The action occurs rapidly and is accompanied by large increases in stomatal diffusive resistance.This research was supported by the Wheat Industry Research Council. 相似文献
14.
15.
PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis 总被引:1,自引:0,他引:1
Céline Zimmerli Alain Vavasseur Hubert Bauer Rainer Hedrich Yves Poirier 《The Plant journal : for cell and molecular biology》2012,72(2):199-211
Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up‐regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro‐grafting a pho1 shoot scion onto wild‐type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild‐type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re‐established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA. 相似文献
16.
In this study, we examined the involvement of endogenous abscisic acid (ABA) in methyl jasmonate (MeJA)-induced stomatal closure using an inhibitor of ABA biosynthesis, fluridon (FLU), and an ABA-deficient Arabidopsis (Arabidopsis thaliana) mutant, aba2-2. We found that pretreatment with FLU inhibited MeJA-induced stomatal closure but not ABA-induced stomatal closure in wild-type plants. The aba2-2 mutation impaired MeJA-induced stomatal closure but not ABA-induced stomatal closure. We also investigated the effects of FLU and the aba2-2 mutation on cytosolic free calcium concentration ([Ca(2+)](cyt)) in guard cells using a Ca(2+)-reporter fluorescent protein, Yellow Cameleon 3.6. In wild-type guard cells, FLU inhibited MeJA-induced [Ca(2+)](cyt) elevation but not ABA-induced [Ca(2+)](cyt) elevation. The aba2-2 mutation did not affect ABA-elicited [Ca(2+)](cyt) elevation but suppressed MeJA-induced [Ca(2+)](cyt) elevation. We also tested the effects of the aba2-2 mutation and FLU on the expression of MeJA-inducible VEGETATIVE STORAGE PROTEIN1 (VSP1). In the aba2-2 mutant, MeJA did not induce VSP1 expression. In wild-type leaves, FLU inhibited MeJA-induced VSP1 expression. Pretreatment with ABA at 0.1 μm, which is not enough concentration to evoke ABA responses in the wild type, rescued the observed phenotypes of the aba2-2 mutant. Finally, we found that in wild-type leaves, MeJA stimulates the expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE3, which encodes a crucial enzyme in ABA biosynthesis. These results suggest that endogenous ABA could be involved in MeJA signal transduction and lead to stomatal closure in Arabidopsis guard cells. 相似文献
17.
Luosha Zhang Xiong Shi Yutao Zhang Jiajing Wang Jingwei Yang Takashi Ishida Wenqian Jiang Xiangyu Han Jingke Kang Xuening Wang Lixia Pan Shuo Lv Bing Cao Yonghong Zhang Jinbin Wu Huibin Han Zhubing Hu Langjun Cui Shinichiro Sawa Junmin He Guodong Wang 《Plant, cell & environment》2019,42(3):1033-1044
CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss‐of‐function mutants were sensitivity to drought stress. CLE9‐induced stomatal closure was impaired in abscisic acid (ABA)‐deficient mutants, indicating that ABA is required for CLE9‐medaited guard cell signalling. We further deciphered that two guard cell ABA‐signalling components, OST1 and SLAC1, were responsible for CLE9‐induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase‐deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA‐dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants. 相似文献
18.
In rice, alday, wheat and tobacco (Nicotiana tabacum L. Samsunand Samsun NN) plants which contained large amounts of ABA,the transpiration rate decreased rapidly with 2 ppm SO2 fumigationand reached 20 to 65% of the initial level after 5- to 30-minexposure depending on their ABA contents. In the cases of broadbean and tobacco (N. glutinosa L.) with low ABA contents, therate slightly increased for 20 and 40 min, respectively, afterthe start of the fumigation and then decreased gradually. Thetranspiration rates of corn and sorghum, in spite of their extremelylow ABA contents, pronouncedly decreased with SO2 fumigationand reached 65 and 50%, respectively, of the initial levelsafter 40-min exposure. Foliar application of 0.04 N HC1 to N.tabacum L. Samsun NN leaves remarkably depressed the transpirationrate, while the application of 0.04 M Na2SO3 decreased the rateonly to the same level as water treatment. Foliar applicationof either HCl or Na2SO3 to N. glutinosa L. leaves exerted littlechange in the transpiration rate. When 104M ABA was appliedto broad bean leaves prior to HCl and Na2SO3 treatment, theirtranspiration rate was decreased by HCl, but not by Na2SO3 application.In sonicated epidermal strips peeled from broad bean leaves,Na2SO3 produced a slight increase in the stomatal aperture sizein the absence of ABA, but showed no effect in the presenceof ABA. The aperture size was identical in the pH range of 3.0to 7.0 in the incubation medium. In the presence of ABA in themedium, the aperture size was small in the acidic region ofpH with a minimal value at pH 4.0. ABA decreased the aperturesize at concentrations above 109 M at pH 4.0 and 106M at pH 7.0 in the medium. [214C] ABA uptake by epidermalstrips was large in the acidic region, especially at pH 4.0. (Received February 28, 1980; ) 相似文献
19.
Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component. 相似文献
20.
《Plant Science Letters》1976,6(2):111-115
Abscisic acid (ABA) inhibited the light-induced opening of stomata in isolated epidermal strips of Commelina benghalensis. It did not alter stomatal closure in the dark. The ABA-induced inhibition in light was released under conditions conducive for cyclic photophosphorylation and remarkably reversed by ATP in the presence of pyruvate. Cyclic photophosphorylation rates of isolated guard cell chloroplasts were significantly reduced by ABA. It is proposed that the direct effect of ABA on stomatal opening was mediated in two ways: (1) by inhibition of cyclic photophosphorylation activities of guard cell chloroplasts and (2) by blocking organic acid formation in guard cells. 相似文献