首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G1 phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G2 phase of the cycle for the first 4–6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G1 arrest.The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase. That, however, appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop and not the activation of specific phosphatases. The inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling and not a consequence of the G2 arrest as can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and ATM/ATR kinase are known to play essential roles in the G2 checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G2 arrest.Additionally, our results indicate that the transient G2 arrest is induced by FGF in RCS cell through mechanisms that are independent of the G1 arrest, and that the G2 block is not strictly required for the sustained G1 arrest but may provide a pausing mechanism that allows the FGF response to be fully established.Key words: fibroblast growth factor, chondrocyte, G2/M arrest, Myt1, cyclin B1, CDK1  相似文献   

2.
Abstract Nocodazole, a temporary inhibitor of microtubule formation, has been used to partly synchronize Ehrlich ascites tumour cells growing in suspension. the gradual entry of cells into mitosis and into the next cell cycle without division during drug treatment has been studied by flow cytometric determination of mitotic cells, analysing red and green fluorescence after low pH treatment and acridine orange staining. Determination of the mitotic index (MI) by this method has been combined with DNA distribution analysis to measure cell-cycle phase durations in asynchronous populations growing in the presence of the drug. With synchronized cells, it was shown that in the concentration range 0.4–4.0 μg/l, cells could only be arrested in mitosis for about 7 hr and at 0.04 μg/ml, for about 5 hr. After these time intervals, the DNA content in nocodazole-blocked cells was found to be increased, and, in parallel, the ratio of red and green fluorescence was found to have changed, showing entry of cells into a next cell cycle without division (polyploidization). It was therefore only possible to partially synchronize an asynchronous population by nocodazole. However, a presynchronized population, e.g. selected G1 cells or metabolically blocked G1/S cells, were readily and without harmful effect resynchronized in M phase by a short treatment (0.4 μg/ml, 3–4 hr) with nocodazole; after removal of the drug, cells divided and progressed in a highly synchronized fashion through the next cell cycle.  相似文献   

3.
Invasive cancer cells are a critical target in order to prevent metastasis. In the present report, we demonstrate real-time visualization of cell cycle kinetics of invading cancer cells in 3-dimensional (3D) Gelfoam® histoculture, which is in vivo-like. A fluorescence ubiquitination cell cycle indicator (FUCCI) whereby G0/G1 cells express a red fluorescent protein and S/G2/M cells express a green fluorescent protein was used to determine the cell cycle position of invading and non-invading cells. With FUCCI 3D confocal imaging, we observed that cancer cells in G0/G1 phase in Gelfoam® histoculture migrated more rapidly and further than cancer cells in S/G2/M phases. Cancer cells ceased migrating when they entered S/G2/M phases and restarted migrating after cell division when the cells re-entered G0/G1. Migrating cancer cells also were resistant to cytotoxic chemotherapy, since they were preponderantly in G0/G1, where cytotoxic chemotherapy is not effective. The results of the present report suggest that novel therapy targeting G0/G1 cancer cells should be developed to prevent metastasis.  相似文献   

4.
Centrifugal elutriation was used to separate 9L rat brain tumour cells into fractions enriched in the G1, S, or G2/M phases of the cell cycle. Cells enriched in early G1, phase were recultured, grown in synchrony, and harvested periodically for analysis of their DNA distribution and polyamine content. Mathematical analysis of the DNA distributions indicated that excellent synchrony was obtained with low dissersion throughout the cell cycle. Polyamine accumulation began at the time of seeding, and intracellular levels of putrescine, spermidine, and spermine increased continuously during the cell cycle. In cells in the G2/M phase of the cell cycle, putrescine and spermidine levels were twice as high as in cells in the G1, phase. DNA distribution and polyamine levels were also analysed in cells taken directly from the various elutriation fractions enriched in G1, S, or G2/M. Because we did not obtain pure S or G2/M populations by elutriation or by harvesting synchronized cells, a mathematical procedure—which assumed that the measured polyamine levels for any population were linearly related to the fraction of cells in the G1, S, and G2/M phases times the polyamine levels in these phases and that polyamine levels did not vary within these phases—was used to estimate ‘true’ phase-specific polyamine levels (levels to be expected if perfect synchrony were achieved). Estimated ‘true’ phase-specific polyamine levels calculated from the data obtained from cells either sorted by elutriation or obtained from synchronously growing cultures were very similar.  相似文献   

5.
Density-arrested BALB/c-3T3 cells stimulated to proliferate in an amino acid-deficient medium arrest in mid-G1 at a point termed the V point. Cells released from V point arrest require 6 hr to traverse late G1 and enter S phase. As data presented here show that mRNA synthesis is needed for 2–3 hr after release of cells from the V point, after which inhibition of mRNA synthesis does not prevent entry into S phase, we used this mid-G1 arrest protocol to analyze gene expression in late G1. We found that although stimulation of cells in amino acid-deficient medium did not inhibit the induction of genes expressed in early G1, genes normally expressed in late G1 were expressed only after release from the V point. The expression of late G1 genes in cells released from the V point was temporally similar, in respect to G1 location, as was seen in stimulation of quiescent Go cells. As this protocol effectively divides gene expression into early (pre-V point) and late (post-V point) categories, it should be useful in studies of growth factor-modulated events that regulate traverse of late G1 and commitment to DNA synthesis. In addition, we used c-myb antisense oligonucleotides to show that c-myb expression, which occurs in late G1, is required for BALB/c-3T3 fibroblasts to traverse late G1 and initiate DNA synthesis. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Using mouse thymocytes, mitogen-induced [3H]thymidine incorporation was compared with a recently developed flow-cytometric technique, based on acridine orange staining of cells, which differentiates the G0 and G1 phase of thymocytes. PHA induces a transient but considerable G0-G1 shift without any substantial proliferation. On the other hand, crude supernatants derived from Con A-stimulated human peripheral blood mononuclear cells induce only a minor G0-G1 shift and no proliferation. However, PHA in the presence of this supernatant induced an increased [3H]thymidine uptake in thymocytes and a shift from G1 to S. These results support the current hypothesis that a factor present in Con A-activated supernatants in conjunction with PHA stimulation indeed facilitates the entrance of G1 cells into the S phase. The flow-cytometric technique might be used in the study of the interaction of endogenous mediators with exogenous mitogenic agents in activating lymphocytes to proceed through the initial G0-G1 phases of the cell cycle.  相似文献   

7.
tsAF8, ts13, tsHJ-4, and TK?ts13 cells are G1-specific temperature-sensitive (ts) mutants of BHK cells that do not enter S phase when serumstimulated from quiescence at nonpermissive temperature (39.6°-40.6°). TK?ts13 are, in addition, defective in thymidine kinase. Different G1 functions must be involved in these cells, since the first three cell lines complement each other when forming heterokaryons. We have used these cells to study the role of the nucleus in the cytoplasmic expression of these G1 functions during the transition of cells from the non-proliferating to the proliferating state. We fused cytoplasts from either serumstarved (G0) or serum-stimulated (S) tsAF8 cells with G0-ts13, G0-tsHJ-4, and G0-TK?ts13 recipient cells and determined, after serum stimulation of the fusion products, which type of cytoplasts could complement the defective G1 functions. Cytoplasts from S-tsAF8 cells complemented all three functions, i.e., cybridoids between S phase cytoplasts and ts13 or tsHJ-4 recipient cells entered S at the nonpermissive temperature, and TK?ts13 recipient cells incorporated exogenous thymidine. Cytoplasts isolated from G0-tsAF8 cells (3 days of serum starvation) complemented ts13 cells but not tsHJ-4 and TK?ts13 cells. Cytoplasts from 6-day starved tsAF8 cells lost the complementing capacity for ts13 cells. However, when the 6-day starved tsAF8 cells were fused with G0-ts13 cells, the heterokaryons entered S phase at the nonpermissive temperature. Also, cytoplasts isolated from the 6-day starved cells that were serum stimulated for 40 hr before enucleation regained the capacity to complement ts13 cells. These results demonstrate that three functions required in G1 cannot be detected in the cytoplasm of serum-starved cells, although they are present in the cytoplasm of S-phase cells. These results suggest that a functional nucleus is required for the cytoplasmic appearance of certain G1 functions in serumstimulated cells.  相似文献   

8.
Preparative polyacrylamide gel electrophoresis was used to examine histone phosphorylation in synchronized Chinese hamster cells (line CHO). Results showed that histone f1 phosphorylation, absent in G1-arrested and early G1-traversing cells, commences 2 h before entry of traversing cells into the S phase. It is concluded that f1 phosphorylation is one of the earliest biochemical events associated with conversion of nonproliferating cells to proliferating cells occurring on old f1 before synthesis of new f1 during the S phase. Results also showed that f3 and a subfraction of f1 were rapidly phosphorylated only during the time when cells were crossing the G2/M boundary and traversing prophase. Since these phosphorylation events do not occur in G1, S, or G2 and are reduced greatly in metaphase, it is concluded that these two specific phosphorylation events are involved with condensation of interphase chromatin into mitotic chromosomes. This conclusion is supported by loss of prelabeled 32PO4 from those specific histone fractions during transition of metaphase cells into interphase G1 cells. A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests involvement of f1 phosphorylation in chromatin structural changes associated with a continuous interphase "chromosome cycle" which culminates at mitosis with an f3 and f1 phosphorylation-mediated chromosome condensation.  相似文献   

9.
The nuclear topography of pericentromeric DNA of chromosome 11 was analyzed in G0 (nonstimulated) and G1 [phytohemagglutinin (PHA) stimulated] human lymphocytes by confocal microscopy. In addition to the nuclear center, the centrosome was used as a second point of reference in the three-dimensional (3D) analysis. Pericentromeric DNA of chromosome 11 and the centrosome were labeled using a combination of fluorescent in situ hybridization (FISH) and immunofluorescence. To preserve the 3D morphology of the cells, these techniques were performed on whole cells in suspension. Three-dimensional images of the cells were analyzed with a recently developed 3D software program (Interactive Measurement of Axes and Positioning in 3 Dimensions). The distribution of the chromosome 11 centromeres appeared to be random during the G0 stage but clearly non-random during the G1 stage, when the nuclear center was used as a reference point. Further statistical analysis of the G1 cells revealed that the centromeres were randomly distributed in a shell underlying the nuclear membrane. A topographical relationship between the centrosome and the centromeres appeared to be absent during the G0 and G1 stages of the cell cycle.  相似文献   

10.
11.
When mouse thymocytes are stimulated with PHA, the proliferative response is very low, unless the culture medium is enriched with interleukin 1 (IL-1)- or interleukin 2 (IL-2)-containing supernatants. Cytofluorometric analyses show, however, that PHA stimulation generates a significant number of cells with increased RNA content (transition from the G0 to G1 phase of the cell cycle). If IL-2 is added to such cultures, the activated cells complete their process of RNA synthesis and then enter the S phase. The use of IL-2-containing culture medium thus permits one to obtain a high correlation between the number of g1 cells and [3H]thymidine incorporation (r = 0.97). Enrichment with IL-1-containing supernatants also results in a statistically significant correlation (r = 0.68), but the regression lines are markedly different for the two interleukins (s = 20.3 for IL-2 and s = 9.2 for IL-1), when analyzed after 48 hr of incubation. These observations suggest that the G1 phase must be divided into two subcompartments, G1a and G1b, the G1a-G1b transition being an IL-2-dependent event. If the number of G1b cells is used to establish correlations with [3H]thymidine incorporation, all values fall on the same regression line, regardless of culture conditions and of the addition of interleukins. It is concluded that IL-2 regulates lymphocyte proliferation at the level of RNA synthesis (G1a-G1b transition) rather than that of DNA synthesis (G1-S transition).  相似文献   

12.
Quiescent prostate cancer (PCa) cells are common in tumors but are often resistant to chemotherapy. Quiescent PCa cells are also enriched for a stem-like tumor initiating population, and can lead to recurrence after dormancy. Unfortunately, quiescent PCa cells are difficult to identify and / or target with treatment in part because the relevant markers are intracellular and regulated by protein stability. We addressed this problem by utilizing PCa cells expressing fluorescent markers for CDKN1B (p27) and CDT1, which can separate viable PCa cells into G0, G1, or combined S/G2/M populations. We used FACS to collect G1 and G0 PC3 PCa cells, isolated membrane proteins, and analyzed protein abundance in G0 vs G1 cells by gas chromatography mass spectrometry. Enrichment analysis identified nucleocytoplasmic transport as the most significantly different pathway. To identify cell surface proteins potentially identifying quiescent PCa cells for future patient samples or for antibody based therapeutic research, we focused on differentially abundant plasma membrane proteins, and identified ERBB2 (HER2) as a cell surface protein enriched on G0 PCa cells. High HER2 on the cell membrane is associated with quiescence in PCa cells and likely induced by the bone microenvironment. Using a drug conjugated anti-HER2 antibody (trastuzumab emtansine) in a mouse PCa xenograft model delayed metastatic tumor growth, suggesting approaches that target HER2-high cells may be beneficial in treating PCa. We propose that HER2 is deserving of further study in PCa as a target on quiescent cells to prevent recurrence, decrease chemotherapy resistance, or eradicate minimal residual disease.  相似文献   

13.
Summary The relationships between cell kinetics and nuclear transformations in regeneration were investigated in the planarianPolycelis nigra by means of image analysis. A SAMBA 200 cell image processor was used to compute densitometric, textural and morphological parameters on Feulgen-stained nuclei in the blastema and near the cut 2–96 h after decapitation. On the basis of these parameters, the phase of the cell cycle (G1–G0, S, G2 and M) was identified and the variations in the percentage of cells in the various phases as well as the blastema cell number were computed against time after decapitation. It was demonstrated that the transection is followed by the sequential wasting of the M, G2, S and G1–G0 compartments. The depletion of a compartment was interpreted as being responsible for the subsequent recovery observed in the next one. The results show that cell proliferation at the section level is not sufficient to account for the increase of the blastema cell number during the first 48 h of regeneration, since the doubling time is about 12 h while the average cycle time is 48 h. It is thus suggested that G1–G0 cells migrate toward the section level, at least during the first 2 days of regeneration. Analysis of the nuclear profiles demonstrated that there are two different classes of G1–G0 cells: one corresponding to mature cells with a lot of condensed chromatin distributed in clumps within the nucleus, the other to immature cells with chromatin regularly distributed according to a rather homogeneous pattern. About one G1–G0 cell out of five is immature at the section level before decapitation while four cells out of five are immature as early as 8 h after the cut. This early inversion of the ratio between mature and immature cells argues in favour of an immigration of immature G1–G0 cells to the young blastema, where they are expected to accomplish only one cell cycle, and thus gives rise to mature cells.  相似文献   

14.
Quiescent cancer cells are resistant to cytotoxic agents which target only proliferating cancer cells. Time-lapse imaging demonstrated that tumor-targeting Salmonella typhimurium A1-R (A1-R) decoyed cancer cells in monolayer culture and in tumor spheres to cycle from G0/G1 to S/G2/M, as demonstrated by fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging. A1-R infection of FUCCI-expressing subcutaneous tumors growing in nude mice also decoyed quiescent cancer cells, which were the majority of the cells in the tumors, to cycle from G0/G1 to S/G2/M, thereby making them sensitive to cytotoxic agents. The combination of A1-R and cisplatinum or paclitaxel reduced tumor size compared with A1-R monotherapy or cisplatinum or paclitaxel alone. The results of this study demonstrate that A1-R can decoy quiescent cancer cells to cycle to S/G2/M and sensitize them to cytotoxic chemotherapy. These results suggest a new paradigm of bacterial-decoy chemotherapy of cancer.  相似文献   

15.
An analytical formula for calculating peak channel ratios in fluorescent cytophotometric determinations of DNA content per cell was derived to assess the effects of inaccuracies in the model-dependent derivation of S-phase cell populations and of systematic instrumental errors. The DNA distribution histograms usually have two peaks, corresponding to the 2C DNA content of G1 cells and to the 4C DNA content of G2 and M cells. In the presence of S-phase cells, the ratio of peak channels G2/G1 becomes less than 2. The calculation uses the model-dependent number of S-phase cells per channel and instrumental resolution to obtain G2/G1. The peak channel ratio calculated in this way decreases with increasing coefficient of variation and increasing proportion of S-phase cells. The calculated G2/G1 peak channel ratios were compared with 17 experimental values ranging from 1.68 to 2.08. Significant differences were found for two experiments, and the calculated G2/G1 ratios were systematically low by ≈4% for the other experiments. When this systematic difference in predicted peak channel ratios is taken into account, the formula predicts the observed ratios with an accuracy of 1% showing the dominant effect of S-phase cells in modifying the observed spectrum. The possible experimental effects leading to the observed systematic discrepancy are discussed A programmable pocket calculator program to perform these calculations is also described in detail.  相似文献   

16.

Background

Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells.

Results

In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment.

Conclusions

The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells  相似文献   

17.
Summary Analysis of the cell cycle by three methods has revealed unusual kinetics of proliferation in tumour derived suspensions ofCrepis capillaris. The different methods of analysis yield different estimates of cycle phase durations, and such discrepancies have been explained in terms of low growth fractions with rapid total cycle traverse. Specifically, confidence in the estimation of G2 duration by the fraction of labelled mitosis analysis, and comparison with shorter G2 estimates obtained by the two other methods, suggests that cells drop out in G1. However, cells which do not drop out of the proliferative compartment traverse G1 extremely rapidly. Extremely short cell cycle durations in which the G1 phase is virtually non-existent are uncharacteristic of plant cell suspension cultures, in which the G1 phase has previously been shown to be extended as compared with meristematic root tip cells. A model has been proposed in which a central core of rapidly dividing cells continuously loses cells into a subpopulation of resting or G0 cells with the G1 DNA content. Similarities between plant and animal tumours with respect to cell growth and division are discussed.  相似文献   

18.
Abstract. Methylmercury (MeHg) effects on cell cycle kinetics were investigated to help identify its mechanisms of action. Flow cytometric analysis of normal human fibroblasts grown in vitro in the presence of BrdU allowed quantitation of the proportion of cells in G1, S, G2 and the next G1 phase. This technique provides a rapid and easily performed method of characterizing phase lengths and transition rates for the complete cell cycle. After first exposure to MeHg the cell cycle time was lengthened due to a prolonged G1. At 3, μm MeHg the G1 phase length was 25% longer than the control. the G1/S transition rate was also decreased in a dose-related manner. Confluent cells exposed to MeHg and replated with MeHg respond in the same way as cells which have not been exposed to MeHg before replating. Cells exposed for long times to MeHg lost a detectable G1 effect, and instead showed an increase in the G2 percentage, which was directly related to MeHg concentration and length of exposure. After 8 days at 5 μM MeHg, 45% of the population was in G2. the G2 accumulation was reversible up to 3 days, but at 6 days the cells remained in G2 when the MeHg was removed. Cell counts and viability indicated that there was not a selective loss of cells from the MeHg. MeHg has multiple effects on the cell cycle which include a lengthened G1 and decreased transition probability after short term exposure of cycling cells, and a G2 accumulation after a longer term exposure. There were no detectable S phase effects. It appears that mitosis (the G2 accumulation) and probably synthesis of some macromolecules in G1 (the lengthened G1 and lowered transition probability) are particularly susceptible to MeHg.  相似文献   

19.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

20.
Summary In the silkworm, Bombyx mori, diapause occurs at a specific embryonic stage, i.e. after formation of the germ band with cephalic lobes and telson and sequential mesoderm segmentation. As long as the eggs are incubated at 25° C, cell divisions and morphological development of the embryos cease. To examine changes in percentage of embryonic cells in the G1, S and G2 phases during embryogenesis, nuclear fractions were isolated from embryos, stained with propidium iodide and then subjected to flow cytometric analysis. The percentages of embryonic cells in G1, S and G2 were 10, 35 and 55%, respectively, at the stage of formation of cephalic lobes, whilst 98% of cells were in G2 at diapause stage. After termination of diapause by acclimation at 5° C or by a combination of chilling and HCl, cell division resumed in the embryos. During this period, the cells rapidly entered S phase through G1 from G2, suggesting that their G1 phase was short. In eggs in which diapause was averted by HCl-treatment after incubation at 25° C for 20 h after oviposition, embryonic development proceeded continuously for 9.5 days at 25° C until hatching. Along with this development, the G1 fraction increased to levels of about 90%. These results indicate that embryonic cells are arrested in G2 at diapause and suggest that, concomitant with further embryonic development, cell cycles become slower in proportion to an increasing length of G1. Finally, most of the cells may be arrested in G1, while there is only a small fraction of cells continuously cycling. Offprint requests to: T. Yaginuma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号