首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-O-Alkyl-2-O-acetyl-sn-glycero-3-phosphocholines (platelet activating factor, PAF) aggregate human thrombocytes in a concentration dependent fashion. After a short lag-phase, maximum aggregation is reached within 2 min. PAF releases serotonin from human thrombocytes within 1 min. Indomethacin and creatine phosphate (CP)/creatine phosphokinase (CPK) are able to inhibit the second phase of the aggregation by PAF, while xylocain reduces both the first and second phase of aggregation of human thrombocytes. Hirudine neither influences the first nor the second phase of aggregation by PAF.  相似文献   

2.
Leech saliva is shown to contain protein platelet aggregation inhibitors and a range of selective low molecular weight (LMW) aggregation inhibitors. Gel filtration on Bio-Gel P-2 (cut-off kDa) yields a protein fraction (Fr. I) and three LMW fractions. Fr. I inhibits aggregation induced by collagen, ADP, epinephrine and arachidonic acid. Of all the fractions, only one, Fr. II (LMW) specifically inhibits aggregation induced by platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine). Fr. II also inhibits thrombin-induced platelet aggregation. Fr. III inhibits aggregation induced by ADP, epinephrine and arachidonic acid, and Fr. IV only that induced by arachidonic acid. Fr. II also inhibits PAF- and thrombin-induced thromboxane generation in platelets, but does not inhibit arachidonic acid-induced thromboxane generation. Efforts to separate the anti-PAF from the anti-thrombin activity have been unsuccessful. The inhibition may therefore be due to a single inhibitor, though it may also be due to several inhibitors. Fr. II also inhibits superoxide anion production in formyl Met-Leu-Phe (fMLP)- and ionophore 23187- stimulated neutrophils. This may be due to the inhibition of the effects of PAF generated within the cell. Preliminary results suggest that the Fr. II inhibitor(s) is (are) amphipathic. The interaction of platelets with PAF and their interaction with the inhibitor(s) are mutually exclusive, and the inhibition may be competitive.  相似文献   

3.
In an earlier study (Miwa, M., Hill, C., Kumar, R., Sugatani, J., Olson, M. S., and Hanahan, D. J. (1987) J. Biol. Chem. 262, 527-530) it was shown that an inhibitor of platelet-activating factor (PAF), a powerful endogenous mediator of platelet aggregation, was present in freeze-clamped perfused livers. Subsequently, we determined that this substance was a mixture of unsaturated free fatty acids (FFA). Among these FFA, oleic acid between 10 and 100 microM was found to be a potent inhibitor of PAF-induced platelet aggregation and serotonin secretion. Consequently, in order to understand the molecular mechanism of oleic acid action, we investigated the effects of this FFA on several biochemical events associated with platelet aggregation induced by PAF. The effect of oleic acid and/or PAF on the level of [32P]phosphatidylinositol 4-phosphate (PIP) and [32P]phosphatidylinositol 4,5-bisphosphate (PIP2) was examined by using platelets labeled with [32P]phosphate. Oleic acid induced a dose-dependent decrease in the levels of [32P]PIP and [32P]PIP2; a maximal decrease in [32P]PIP and [32P]PIP2 of approximately 50 and 25%, respectively, was observed within seconds after the addition of 20 microM oleic acid and persisted for at least 15 min. Oleic acid did not induce the formation of [3H]inositol phosphates in platelets prelabeled with [3H]inositol, suggesting that the decrease in [32P]PIP and [32P]PIP2 was not due to a stimulation of phospholipase C. In contrast to oleic acid, PAF induced a dose-dependent increase in the [32P]PIP level, reaching a maximum of approximately 200% 3 min after the addition of 1 nM PAF to the platelets. This increase in [32P]PIP was accompanied by platelet aggregation and secretion, and a close correlation was established between the [32P]PIP level and the degree of aggregation. Oleic acid and PAF, when added together to the platelets, interacted by affecting the level of [32P]PIP and [32P]PIP2 in an opposite way since the decrease in the level of [32P]PIP and [32P] PIP2 induced by oleic acid was partially reversed by an excess of PAF. The decrease in the levels of [32P] PIP and [32P]PIP2 caused by oleic acid was associated with an inhibition of platelet aggregation induced by PAF. Interestingly, oleic acid did not block [3H]PAF binding to platelets but inhibited the PAF-induced phosphorylation of platelet proteins of 20 kDa and 40 kDa. These results suggest that inhibition of the PAF response by oleic acid may be at one of the steps in the signal transduction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Washed human platelets that have been separated from plasma in the presence of prostacyclin are activated by the addition of platelet activating factor (PAF). Activation (shape change, serotonin release, and aggregation) correlates closely with the formation of phosphatidic acid and the phosphorylation of a 40,000-dalton protein. Platelet shape change, formation of phosphatidic acid, and protein phosphorylation precede aggregation and are induced at lower concentrations of PAF than those required to induce release of serotonin and platelet aggregation. Platelet shape change, formation of phosphatidic acid, and protein phosphorylation induced by PAF are not affected by trifluoperazine or indomethacin. This indicates that these responses are independent of the liberation of arachidonic acid from platelet phospholipids and the metabolism of arachidonic acid via cyclooxygenase and lipoxygenase. These responses are, however, inhibited by prostacyclin. Platelet shape change is the first measurable physiologic response to platelet agonists and may be associated with the stimulation of phospholipase C, inducing formation of 1,2-diacylglycerol and its phosphorylated product, phosphatidic acid. Transient formation of 1,2-diacylglycerol may also induce the specific activation of the protein kinase C that phosphorylates a 40,000-dalton protein.  相似文献   

5.
Leptospire lipopolysaccharide (LPS) stimulated the adherence of polymorphonuclear neutrophils (PMNs) to human umbilical vein endothelial cells (HUVEC). Enhanced PMN adherence in response to leptospire LPS can be mediated by platelet-activator-factor (PAF), because a PAF antagonist reduced adherence. Leptospire LPS also induced the adherence platelets or U937. The second experiment involved leptospire LPS elicited platelet aggregation in a PMN-platelet mixture, because leptospire LPS stimulated human PMN but not the human platelets. The platelet response was observed only in the mixture system and was inhibited by a PAF antagonist. PAF could be an important pathogenic factor in human leptospirosis.  相似文献   

6.
Spiramine N-6属粉花秀线菊植物中提取分离的二十碳二萜生物碱。本实验采用Born,Shen和Hamburger等方法分别观察了spiramine N-6在体外和体内对兔血小板聚集功能的影响。应用荧光分光光度法测定其对血小板5-羟色胺释放反应的作用,同时评价spiramine N-6对激活的血小板与中性粒细胞之间粘附反应的影响。结果表明:spiramine N-6在体外选择性抑制血小板活化因子(PAF)诱导的血小板聚集,并呈量效关系,其IC50=26μmol/L,对花生四烯酸(AA)或腺苷二磷酸(ADP)引起的血小板聚集无明显作用;spiramine N-6静注后明显抑制PAF、AA和ADP诱导的血小板聚集。Spiramine N-6呈浓度依赖性减少AA和PAF引起血小板5-羟色胺的释放,其IC50分别为64.7和33.5μmol/L。Spiramine N-6明显阻抑激活的血小板与中性粒细胞间的粘附率,其IC50为78.6μmol/L。结果提示spiramine N-6作为二十碳二萜生物碱具有较强的抗血小板和阻抑血小板一中性粒细胞相互作用的生物活性。  相似文献   

7.
High levels of platelet activating factor (PAF) activity were demonstrated by platelet aggregation and serotonin release assays to be present in fright induced epidermal secretions of the Arabian Gulf catfish, Arius bilineatus (Valenciennes, 1840). The PAF activity was purified by thin-layer chromatography. Mass spectral analysis combined with chemical and enzymatic modification of the purified PAF and inhibitor studies indicated that PAF activity was due to the presence of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine (AGEPC) molecules. The total AGEPC concentration in the epidermal secretions based on PAF assays was 8 x 10(8) M, well above the threshold level for platelet activation which is near 5 x 10(-11) M. Thus, stimulated epidermal secretory cells of Arius bilineatus supply platelet activating molecules at physiologically high concentrations to sites of injury.  相似文献   

8.
The influence of an amide of prostaglandin E1 and ethanolamine plasmalogen platelet-activating factor analog 1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phospho-(N-11alpha, 15alpha-dioxy-9-keto-13-prostenoyl)ethanolamine (PGE1-PPAF) on platelet-activating factor (PAF)-, ADP-, and thrombin-induced human platelet aggregation has been studied. It was found that PGE1-PPAF inhibits the PAF-, ADP-, and thrombin-induced platelet aggregation in platelet-rich plasma. 1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine inhibited PAF-induced aggregation up to 50% but had no influence on platelet aggregation induced by ADP or thrombin. The ethanolamine plasmalogen analog of PAF 1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phospho-(N-palmitoyl)ethanolami ne, having a palmitoyl residue instead of PGE1, did not inhibit platelet aggregation induced by PAF, ADP, or thrombin. We propose that inhibition of human platelet aggregation by PGE1-PPAF is mediated by its action on platelet PAF-receptors and the adenylate cyclase system.  相似文献   

9.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

10.
The role of protein-tyrosine phosphorylation in the signal transduction of platelet activating factor (PAF) was investigated in rabbit platelets with a range of synthetic compounds that inhibit protein-tyrosine kinases. In particular, erbstatin (IC50 approximately 20 micrograms/ml) abrogated a wide range of platelet responses to PAF, including tyrosine phosphorylation of cellular proteins, polyphosphoinositide turnover, activation of membranous protein kinase C, platelet aggregation, and serotonin secretion. With about a third of the potency of erbstatin, compound RG50864 also inhibited many of these responses, whereas at 100 micrograms/ml, genistein, 670C88 and ST271 were without effect. Finally, the ability of thrombin to cause platelet aggregation and serotonin secretion was also compromised by erbstatin.  相似文献   

11.
The interaction of a plasmalogenic analog of platelet-activating factor (1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphocholine; 1-alkenyl-PAF) with human platelets was studied. 1-Alkenyl-PAF induced an increase in intracellular Ca2+ concentration and inhibition of adenylate cyclase at significantly higher concentrations than PAF. 1-Alkenyl-PAF inhibits PAF-induced platelet aggregation but has no effect on ADP- or thrombin-induced aggregation of human platelets. In contrast to PAF, 1-alkenyl-PAF increases [3H]PGE1 binding with human platelets. The properties of 1-alkenyl-PAF as an agonist or antagonist of PAF receptors apparently depend on its concentration in the cell medium. Under physiological conditions 1-alkenyl-PAF might be a natural PAF antagonist acting in the human cardiovascular system.  相似文献   

12.
The present study was undertaken in order to characterize the dose-dependent nature of acetylsalicylic acid (ASA) on platelet aggregation and plasma thromboxane B2 (TXB2) release in healthy volunteers. Volunteers received either 25, 50, 100 or 500 mg daily for five consecutive days. At the end of the five day period, all dosages of ASA were capable of completely suppressing TXB2 production and arachidonic acid-induced platelet aggregation. At that time, the second phase of ADP-induced aggregation was also blocked. However, while the inhibition following 500 mg ASA was complete after 24 hours, total inhibition with 100, 50 and 25 mg was attained only after two, three and four days, respectively, indicating the cumulative effect of ASA on platelets. Aggregation induced by collagen was also inhibited dose-dependently- yet slower and at no time complete. ASA had no inhibitory effect on aggregation by platelet-activating factor (PAF). It is concluded that a daily dose of 50 mg ASA would suffice in blocking platelet TXA2 production and aggregation induced by most physiological agents.  相似文献   

13.
CV-3988 - a specific antagonist of platelet activating factor (PAF)   总被引:20,自引:0,他引:20  
CV-3988, rac-3-(N-n-octadecylcarbamoyloxy)-2-methoxypropyl 2-thiazolioethyl phosphate was shown to be a specific inhibitor of platelet activating factor (PAF). This compound in concentrations of 3 x 10(-6) to 3 x 10(-5)M inhibited aggregation of rabbit platelets induced by PAF (3 x 10(-8)M), while it had no effect on the aggregation induced by arachidonic acid, ADP, collagen or A-23187. CV-3988 alone even at a concentration of 10(-3)M had no effect on platelet aggregation. The inhibitory action of CV-3988 on the PAF-induced aggregation was independent of the formation of micelles. The PAF (0.1 to 1.0 micrograms/kg, i.v.)-induced hypotension in anesthetized rats was also inhibited dose-dependently by the i.v. administration of CV-3988 (1 and 10 mg/kg), while the hypotensive actions induced by the i.v. administration of acetylcholine (1 micrograms/kg), arachidonic acid (1 mg/kg), bradykinin (10 micrograms/kg), isoproterenol (1 microgram/kg) and histamine (100 micrograms/kg) were not altered by CV-3988 (10 mg/kg, i.v.). All these findings indicate that CV-3988 specifically inhibits the action of PAF in vitro and in vivo. This is the first report of a PAF antagonist which can specifically inhibit the PAF-induced hypotension as well as the PAF-induced platelet aggregation.  相似文献   

14.
The effects of 6-methylprednisolone sodium succinate, quinacrine and the synthetic anti-PAF compound L-652,731 were studied on the PAF and complement induced aggregation of rabbit polymorphonuclear leukocytes in vivo. High doses (100-250 mg/kg) of corticosteroid were able to abrogate PAF and complement induced aggregation. Quinacrine (1.25 mg/kg), and L-652,731, partially precluded complement-depending aggregation. The L-652,731 dose employed was just enough to prevent PAF induced aggregation. These results suggest that in those pathological conditions in which polymorphonuclear aggregation occurs, factors other than those derived from plasmatic complement system activation, and laboring jointly with it, may be involved.  相似文献   

15.
Electrorotation of single platelets was compared with [14C]serotonin release, aggregation and electron microscopy. Activation of washed and degranulated platelets was induced by thrombin, arachidonic acid, collagen, adrenaline, platelet activation factor (PAF), ADP and A23187. A strong correlation between electrorotation decrease and serotonin release was found. Electrorotation did not correlate with aggregation. It was concluded that an increase of the specific conductivity of the platelet membrane by three orders of magnitude (approx. 1.0.10(-7) S.m-1 to 1.0.10(-4) S.m-1) upon activation was responsible for the observed decrease of anti-field rotation and the shift of the first characteristic frequency towards higher values. Electrorotation allowed for time-dependent measurements of activation. Characteristic activation times in the order of minutes were found. There was the following sequence of activators classified by increasing activation time constants: A23187 was the fastest followed by thrombin, collagen, PAF, arachidonic acid, adrenaline, and ADP.  相似文献   

16.
The effect of PAF in aggregation of platelets induced by endotoxin was studied in experiments in vitro. It is indicated that in high concentration (1.10(-7)-1.10(-6) M) PAF did not affect the degree of aggregation of platelets induced by lipopolysaccharides (LPS) S. typhimurium and N. meningitidis. Successive addition to PRP LPS and PAF or joint addition of PAF and LPS did not change the degree of aggregation of each inductor or their sum. A lower concentration of PAF (1.10(-11)-1.10(-9) M) and endotoxin caused a more expressive aggregation of platelets than their successive addition. Stimulating activity of PAF on endotoxin-induced aggregation, perhaps, is caused by involvement of metabolism of arachidonic acid during blood platelets activation.  相似文献   

17.
The effect of a thrombin receptor agonist peptide (TRAP-6) on the release of nitric oxide (NO) and platelet activating factor (PAF) from resting and calcium-ionophore (A23187)-activated rat peritoneal mast cells (RPMC) was studied using a platelet aggregation bioassay. RPMC spontaneously released NO, which inhibited TRAP-6-, ADP-, and PAF-stimulated platelet aggregation. This effect of NO was abolished by the addition of an NO binding agent, oxyhemoglobin (oxyHb), to the platelet suspension. The RPMC-induced suppression of platelet aggregation was completely inhibited by the NO-synthase inhibitor L-NAME. TRAP-6 and its high affinity analog haTRAP stimulated the rapid release of NO from RPMC. The effect of TRAP-6 was inhibited by pretreatment of the RPMC with L-NAME or with the inhibitor of the constitutive NO-synthase isoform (cNOS) calmidazolium. TRAP-6 inhibited PAF release from A23187-activated RPMC via an NO-dependent mechanism. Platelet aggregation induced by PAF release from activated RPMC was also confirmed in experiments using the PAF receptor antagonist ginkgolide B. Thus, TRAP-6 is a rapidly acting modulator of mast cell reactivity; it stimulates NO release and inhibits PAF secretion.  相似文献   

18.
The present study was undertaken in order to characterize the dose-dependent nature of acetylsalicylic acid (ASA) on platelet aggregation and plasma thromboxane B2 (TXB2) release in healthy volunteers. Volunteers received either 25, 50, 100 or 500 mg daily for five consecutive days. At the end of the five day period, all dosages of ASA were capable of completely suppressing TXB2 production and arachidonic acid-induced platelet aggregation. At that time, the second phase of ADP-induced aggregation was also blocked. However, while the inhibition following 500 mg ASA was complete after 24 hours, total inhibition with 100, 50 and 25 mg was attained only after two, three and four days, respectively, indicating the cumulative effect of ASA on platelets. Aggregation induced by collagen was also inhibited dose-dependently- yet slower and at no time complete. ASA had no inhibitory effect on aggregation by platelet-activating factor (PAF). It is concluded that a daily dose of 50 mg ASA would suffice in blocking platelet TXA2 production and aggregation induced by most physiological agents.  相似文献   

19.
In granulocytes, platelet-activating factor (PAF) shares many of its biological effects with other chemotactic factors, such as FMLP, complement fragments, and lipid mediators. Two unique effects are that PAF is relatively resistant to pertussis toxin (PTX) and that PAF activates the inflammatory functions of eosinophils more strongly than it activates those of neutrophils. To investigate the molecular mechanisms of the responses of eosinophils to PAF, we analyzed superoxide anion production by a chemiluminescence method that provides real-time kinetic data for the cellular responses. We found that PAF induced bimodal superoxide anion production in human eosinophils, consisting of an intense, but transient, first phase and a larger and sustained second phase. In contrast, PAF induced essentially a transient unimodal response in human neutrophils. The two phases of eosinophil response were mediated by distinct cellular mechanisms: the second phase was highly dependent on cellular adhesion and beta(2) integrins, but the first phase was independent of both adhesion and beta(2) integrins. The upstream signaling mechanisms were also different: the second phase was mediated by PTX-resistant G-protein(s) and through activation of phosphatidylinositol 3-kinase, while the first phase was mediated by PTX-sensitive G-protein(s). Furthermore, the second-phase response was approximately 100-fold more resistant to inhibition by a competitive PAF receptor antagonist than the first phase. Thus, eosinophils and neutrophils react differently to PAF, and PAF activates two separate and distinct effector pathways in human eosinophils. These two activation pathways may explain the eosinophils' strong and diverse biological responses to PAF.  相似文献   

20.
Dipetalodipin (DPTL) is an 18 kDa protein cloned from salivary glands of the triatomine Dipetalogaster maxima. DPTL belongs to the lipocalin superfamily and has strong sequence similarity to pallidipin, a salivary inhibitor of collagen-induced platelet aggregation. DPTL expressed in Escherichia coli was found to inhibit platelet aggregation by collagen, U-46619, or arachidonic acid without affecting aggregation induced by ADP, convulxin, PMA, and ristocetin. An assay based on incubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) followed by chromatography, mass spectrometry, and isothermal titration calorimetry showed that DPTL binds with high affinity to carbocyclic TXA(2), TXA(2) mimetic (U-46619), TXB(2), PGH(2) mimetic (U-51605), PGD(2,) PGJ(2), and PGF(2α). It also interacts with 15(S)-HETE, being the first lipocalin described to date to bind to a derivative of 15-lipoxygenase. Binding was not observed to other prostaglandins (e.g. PGE(1), PGE(2), 8-iso-PGF(2α), prostacyclin), leukotrienes (e.g. LTB(4), LTC(4), LTD(4), LTE(4)), HETEs (e.g. 5(S)-HETE, 12(S)-HETE, 20-HETE), lipids (e.g. arachidonic acid, PAF), and biogenic amines (e.g. ADP, serotonin, epinephrine, norepinephrine, histamine). Consistent with its binding specificity, DPTL prevents contraction of rat uterus stimulated by PGF(2α) and induces relaxation of aorta previously contracted with U-46619. Moreover, it inhibits angiogenesis mediated by 15(S)-HETE and did not enhance inhibition of collagen-induced platelet aggregation by SQ29548 (TXA(2) antagonist) and indomethacin. A 3-D model for DPTL and pallidipin is presented that indicates the presence of a conserved Arg(39) and Gln(135) in the binding pocket of both lipocalins. Results suggest that DPTL blocks platelet aggregation, vasoconstriction, and angiogenesis through binding to distinct eicosanoids involved in inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号