首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
Abstract: Molecular subtypes of muscarinic receptors (m1–m5) are novel targets for cholinergic replacement therapies in Alzheimer's disease. However, the status of these receptors in human brain and Alzheimer's disease is incompletely understood. The m1–m5 receptors in brains from control subjects and Alzheimer's disease patients were examined using a panel of specific antisera and radioligand binding. Quantitative immunoprecipitation demonstrated a predominance of the m1, m2, and m4 receptor subtypes in cortical and subcortical regions in control subjects. In Alzheimer's disease, normal levels of m1 receptors measured by radioligand binding contrasted with decreased m1 receptor immunoreactivity, suggesting that the m1 receptor is altered in Alzheimer's disease. The m2 immunoreactivity was decreased, consistent with the loss of m2 binding sites and the location of this receptor subtype on presynaptic cholinergic terminals. The m4 receptor was up-regulated significantly and may offer a target for new memory-enhancing drugs. Differential alterations of molecular subtypes of muscarinic receptors may contribute to the cholinergic component of Alzheimer's disease dementia.  相似文献   

2.
3.
The discovery of cholinergic deficit in Alzheimer's disease (AD) patient's brain has triggered research efforts, using cholinomimetic approaches for their efficacy in AD therapy. Various therapies may be of potential clinical use in AD. Among these are cholinergic agents, which include muscarinic agonists, acetylcholinesterase inhibitors, and acetylcholine releasing agents. One of the muscarinic agonists tested in AD is arecoline and its bioisosters, which are widely explored as muscarinic receptor 1 agonist (M1 receptor agonist) in AD research. In this regard, five-membered heterocyclic ring system attached arecoline basic nucleus (N-methyl tetrahydropyridines) at third position has been extensively researched on. The present research involved synthesis of arecoline thiazolidinones 5(a-j) by using dipolar addition of 3-aminopyridine and alkyl/aryl carboxaldehydes in presence of gamma ferrite as catalyst. The resulting products were methylated and reduced to get desired products. Subsequently the synthesized arecoline thiazolidinones were subjected to in vitro muscarinic receptor binding studies using male Wistar rat brain (cerebral cortex) membrane homogenate and extended this in vitro study to in vivo pharmacological evaluation of memory and learning in male Wistar rats. Four derivatives (5a-5c and 5e) showed considerable M1 receptor binding affinity (in vitro) and elicited beneficial effects in vivo memory and learning models (Rodent memory evaluation, plus and Y maze studies).  相似文献   

4.
The prescribed drugs for treatment of cognitive deficits in Alzheimer's disease (AD) patients are regarded as symptomatic drugs. Effective disease modifying therapies are not yet prescribed in AD patients. Three major hallmarks of AD (e.g. cholinergic hypofunction, Aβ and tau neuropathologies) are closely linked raising the expectation that restoring the cholinergic hypofunction to normal, in particular via selective activation of M1 muscarinic receptors, may alter the onset or progression of AD dementia. This review is focused mainly on modulation of amyloid precursor processing and Aβ levels in the brain via cholinergic treatment strategies based on M1 muscarinic agonists versus other cholinergic treatments (e.g. cholinesterase inhibitors prescribed for treatment of AD, M2 antagonists and nicotinic agonists). Advantages and potential drawbacks of these treatment modalities are reviewed versus the notion that due to an elusive etiology of AD, future disease modifiers should address comprehensively most of these AD hallmarks (e.g. Aβ pathology, tau and tangle pathologies, as well as the cholinergic hypofunction and cognitive impairments). This major requirement may be fulfilled with M1-selective muscarinic agonists and less with other reviewed cholinergic treatments.  相似文献   

5.
Although Alzheimer disease (AD) has been linked to defects in major brain receptors, studies thus far have been limited to the determination of receptor subunits or specific ligand binding studies. However, the availability of current technology enables the determination and quantification of brain receptor complexes. Thus, we examined levels of native receptor complexes in the brains of patients with AD. Cortical tissue was obtained from control subjects (n = 12 females and 12 males) and patients with AD (n = 12 females and 12 males) within a 3-h postmortem time period. The tissues were kept frozen until further biochemical analyses. Membrane proteins were extracted and subsequently enriched by ultracentrifugation using a sucrose gradient. Membrane proteins were then electrophoresed onto native gels and immunoblotted using antibodies against individual brain receptors. We found that the levels were comparable for complexes containing GluR2, GluR3 and GluR4 as well as 5-HT1A. Moreover, the levels of complexes containing muscarinic AChR M1, NR1 and GluR1 were significantly increased in male patients with AD. Nicotinic AChRs 4 and 7 as well as dopaminergic receptors D1 and D2 were also increased in males and females with AD. These findings reveal a pattern of altered receptor complex levels that may contribute to the deterioration of the concerted activity of these receptors and thus result in cognitive deficits observed in patients with AD. It should be emphasised that receptor complexes function as working units rather than individual subunits. Thus, the receptor deficits identified may be relevant for the design of experimental therapies. Therefore, specific pharmacological modulation of these receptors is within the pharmaceutical repertoire.  相似文献   

6.
In vitro competition binding experiments with the selective muscarinic antagonists AF-DX 116 and pirenzepine (PZ) vs 3H-N-methylscopolamine as radioligand revealed a characteristic distribution of muscarinic receptor subtypes in different regions of rat brain. Based on non linear least squares analysis, the binding data were compatible with the presence of three different subtypes: the M1 receptor (high affinity for PZ), the cardiac M2 receptor (high affinity for AF-DX 116) and the glandular M2 receptor (low affinity for PZ and AF-DX 116). The highest proportion of M1 receptors was found in the hippocampus, whilst the cerebellum and the hypothalamus were the regions with the largest fraction of the cardiac M2 and glandular M2 receptors, respectively. In certain brain areas, depending on the relative proportions of the subtypes, flat binding curves were seen for AF-DX 116 and PZ. Based on these data, an approximate distribution pattern of the subtypes in the various brain regions is presented.  相似文献   

7.
It has been recognized for many years that central cholinergic neurons are susceptible to inhibition by opiates and that during withdrawal their firing rates are enhanced. Nevertheless, classical nonselective muscarinic receptor antagonists have not been demonstrated to provide consistent inhibition of withdrawal symptoms in humans or in animal models. The purpose of this study was to determine whether selective blockade of central M1 or M2 muscarinic receptor subtypes could provide inhibition of naloxone precipitated withdrawal symptoms in morphine dependent rats. As with earlier human studies, both cardiovascular and behavioral measures of withdrawal were quantitated. The selective M2 receptor antagonist 4-DAMP was significantly more effective than the M1 antagonist pirenzepine in reducing both cardiovascular and behavioral symptoms. These results are consistent with a role for cholinergic neurons in the expression of certain morphine withdrawal symptoms and suggest that future therapies might be targeted towards central M2 receptors.  相似文献   

8.
9.
Several cholinesterase inhibitors used in the treatment of Alzheimer's disease (AD) have been shown to interact with an allosteric site on the nicotinic acetylcholine receptor (nAChR). A possible linkage between the phosphorylation state of tau, the major component of paired helical filaments found in AD brain, and stimulation of nAChRs by cholinesterase inhibitors and nicotinic agonists was investigated. Western blot analysis showed that treatment of SH-SY5Y cells for 72 h with the cholinesterase inhibitors tacrine (10(-5) M), donepezil (10(-5) M), and galanthamine (10(-5) M), nicotine (10(-5) M), and epibatidine (10(-7) M) increased tau levels as detected with Tau-1, AT 8, and AT 270 monoclonal antibodies and binding of [3H]epibatidine. The increase in tau immunoreactivity induced by nicotine, epibatidine, and tacrine, but not the up-regulation of nAChRs, was prevented by the antagonists d-tubocurarine and mecamylamine. Both antagonists were synergistic with the nicotinic agonists in causing up-regulation, but only d-tubocurarine showed a synergistic effect with tacrine. The increased tau immunoreactivity induced by tacrine was not prevented by atropine, indicating that in terms of cholinergic receptors, tacrine modulates tau levels mainly through interactions with nAChRs and not with muscarinic receptors. Additional work is needed to determine the exact mechanism by which cholinesterase inhibitors and nicotinic agonists modulate phosphorylation and levels of tau protein.  相似文献   

10.
Neurotransmitter receptor alterations in Parkinson's disease.   总被引:17,自引:0,他引:17  
Neurotransmitter receptor binding for GABA, serotonin, cholinergic muscarinic and dopamine receptors and choline acetyltransferase (ChAc) activity were measured in the frontal cortex, caudate nucleus, putamen and globus pallidus from postmortem brains of 10 Parkinsonian patients and 10 controls. No changes in any of these systems were observed in the frontal cortex. In the caudaye nucleus, only the apparent dopamine receptor binding was altered with a significant 30% decrease in the Parkinsonian brain. Both cholinergic muscarinic and serotonin receptor binding were significantly altered in the putamen, the former increasing and the latter decreasing with respect to controls. In addition, ChAc activity was decreased in the putamen. In the globus pallidus, only ChAc activity was significantly changed, decreasing about 60%, with no change in neurotransmitter receptor binding. The results suggest that a progressive loss of dopaminergic receptors in the caudate nucleus may contribute to the decreased response of Parkinsonian patients to L-dopa and dopamine agonist therapy.  相似文献   

11.
Hypoglycemic brain injury is a common and serious complication of insulin therapy associated with diabetes. This study evaluated the effect of insulin-induced hypoglycemia and STZ-induced diabetes on striatal cholinergic receptors and enzyme expression and on motor function. Cholinergic enzymes: AChE and ChAT gene expression, radioreceptor binding assay and immunohistochemistry of muscarinic M1, M3 receptors and α7nAChR were carried out. Motor performance on grid walk test was analysed. AChE and ChAT expression significantly downregulated in hypoglycemic and diabetic rats. Total muscarinic and Muscarinic M3 receptor binding decreased in hypoglycemic rats compared to diabetic rats whereas muscarinic M1 receptor binding increased in hypoglycemic rats compared to diabetic rats. Real-time PCR analysis and confocal imaging of muscarinic M1, M3 receptors confirmed the changes in muscarinic receptor binding in hypoglycemic and diabetic rats. In hypoglycemic rats, α7nAChR expression significantly up regulated compared to diabetic rats. Grid walk test demonstrated the impairment in motor function and coordination in hypoglycemic and hyperglycemic rats. Neurochemical changes along with the behavioral data implicate a role for impaired striatal cholinergic receptor function inducing motor function deficit induced by hypo and hyperglycemia. Hypoglycemia exacerbated the neurobehavioral deficit in diabetes which has clinical significance in the treatment of diabetes.  相似文献   

12.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

13.
A family of five subtypes of muscarinic acetylcholine receptors (mAChR) has been identified based on their molecular structures and second signal transduction pathways. In the present study, we examined the antagonist binding profiles of 9 muscarinic antagonists (atropine, 4-DAMP, pirenzepine, oxybutynin, tiquizium, timepidium, propiverine, darifenacin and zamifenacin) for human muscarinic acetylcholine receptor subtypes (m1, m2, m3, m4 and m5) produced by using a baculovirus infection system in Sf9 insect cells, and rat tissue membrane preparations (heart and submandibular gland). In a scopolamine methyl chloride [N-methyl-3H]- ([3H]NMS) binding assay, pirenzepine and timepidium displayed the highest affinities for the m1 and m2 subtypes, respectively, and both zamifenacin and darifenacin had the highest affinities for the m3 subtype, although the selectivities among the five subtypes were less than 10-fold. Propiverine showed a slightly higher affinity for the m5 subtype, whereas none of the drugs used in this study was uniquely selective for the m4 subtype. The binding affinities of muscarinic antagonists for rat heart and submandibular gland strong correlated with those for human cloned m2 and m3 subtypes, respectively. These data suggest that [3H]NMS binding studies using rat heart and submandibular gland might be useful methods which predict the affinities of test drugs for human muscarinic M2 and M3 receptor subtypes.  相似文献   

14.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

15.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

16.
In the human fetus, obtained postmortem at estimated gestational ages of 8-22 weeks, biochemical activities of cortical choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) were comparable to those of adult brain tissue. In contrast cholinergic receptor binding, including muscarinic M1 and M2 subtypes (measured by displacement of [3H]N-methylscopolamine with, respectively, pirenzepine and carbachol) and [3H]nicotine (putative nicotinic) binding were undetectable before 13-14 weeks and even at 22 weeks were substantially (three- to fourfold) below the respective adult values. Cortical ChAT activity decreased significantly with gestational age whereas binding to the three receptors, including the proportion M1/M2, increased significantly. AChE was present at all ages investigated as the two molecular monomeric (G1) and tetrameric (G4) forms. The proportion of G4, which was much more soluble in fetal compared with adult cortex, increased approximately threefold. Histochemically AChE, although intense in the nucleus of Meynert, was generally confined to subcortical white matter at early fetal developmental periods, appearing later in the cortex localized to nerve fibres and occasional cell bodies. These observations suggest that during the second trimester of human fetal development, cortical cholinergic function may be preceded by relatively high ChAT activity and paralleled not only by increasing receptor binding but also by a proportional increase in the tetrameric form and histochemical reactivity of AChE.  相似文献   

17.
Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.  相似文献   

18.
Estrogen Therapy (ET) may protect against age-related cognitive decline and neuropsychiatric disorders (e.g. Alzheimer's disease). The biological basis for this putative neuroprotective effect is not fully understood, but may include modulation of cholinergic systems. Cholinergic dysfunction has been implicated in age-related memory impairment and Alzheimer's disease. However, to date no one has investigated the effect of long-term ET on brain cholinergic muscarinic receptor aging, and related this to cognitive function. We used Single Photon Emission Tomography (SPET) and (R,R)[(123)I]-I-QNB, a novel ligand with high affinity for m(1)/m(4) muscarinic receptors, to examine the effect of long-term ET and age on brain m(1)/m(4) receptors in healthy females. We included 10 younger premenopausal subjects and 22 postmenopausal women; 11 long-term ET users (all treated following surgical menopause) and 11 ET never-users (surgical menopause, n=2). Also, verbal memory and executive function was assessed in all postmenopausal subjects. Compared to young women, postmenopausal women (ET users and never-users combined) had significantly lower muscarinic receptor density in all brain regions examined. ET users also had higher muscarinic receptor density than ET never-users in all the brain regions, and this reached statistical significance in left striatum and hippocampus, lateral frontal cortex and thalamus. Moreover, in ET users, (R,R)[(123)I]-I-QNB binding in left hippocampus and temporal cortex was significantly positively correlated with plasma estradiol levels. We also found evidence for improved executive function in ET users as compared to ET never-users. However, there was no significant relationship between receptor binding and cognitive function within any of the groups. In healthy postmenopausal women use of long-term ET is associated with reduced age-related differences in muscarinic receptor binding, and this may be related to serum estradiol levels.  相似文献   

19.
Complications arising from diabetes mellitus include cognitive deficits, neurophysiological and structural changes in the brain. The current study investigated the expression of cholinergic, insulin, Vitamin D receptor and GLUT 3 in the brainstem of streptozotocin-induced diabetic rats. Radioreceptor binding assays and gene expression were done in the brainstem of male Wistar rats. Our results showed that Bmax of total muscarinic, muscarinic M3 receptors was increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. A significant increase in gene expression of muscarinic M3, α7 nicotinic acetylcholine, insulin, Vitamin D3 receptors, acetylcholine esterase, choline acetyl transferase and GLUT 3 were observed in the brainstem of diabetic rats. Immunohistochemistry studies of muscarinic M1, M3 and α7 nicotinic acetylcholine receptors confirmed the gene expression at protein level. Vitamin D3 and insulin treatment reversed diabetes-induced alterations to near control. This study provides an evidence that diabetes can alter the expression of cholinergic, insulin, Vitamin D receptors and GLUT 3 in brainstem. We found that Vitamin D3 treatment could modulate the Vitamin D receptors and plays a pivotal role in maintaining the glucose transport and expressional level of cholinergic receptors in the brainstem of diabetic rats. Thus, our results suggest a therapeutic role of Vitamin D3 in managing neurological disorders associated with diabetes.  相似文献   

20.
Many areas of the cerebral cortex process sensory information or coordinate motor output necessary for control of movement. Disturbances in cortical cholinergic system can affect locomotor coordination. Spinal cord injury causes severe motor impairment and disturbances in cholinergic signalling can aggravate the situation. Considering the impact of cortical cholinergic firing in locomotion, we focussed the study in understanding the cholinergic alterations in cerebral cortex during spinal cord injury. The gene expression of key enzymes in cholinergic pathway - acetylcholine esterase and choline acetyl transferase showed significant upregulation in the cerebral cortex of spinal cord injured group compared to control with the fold increase in expression of acetylcholine esterase prominently higher than cholineacetyl transferase. The decreased muscarinic receptor density and reduced immunostaining of muscarinic receptor subtypes along with down regulated gene expression of muscarinic M1 and M3 receptor subtypes accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic receptors and reduced immunostaining of alpha 7 nicotinic receptors in confocal imaging. Our data pin points the disturbances in cortical cholinergic function due to spinal cord injury; which can augment the locomotor deficits. This can be taken into account while devising a proper therapeutic approach to manage spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号