首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In aqueous solution bovine myelin basic protein exhibits no significant alpha-helical or beta-pleated sheet structure. However, in vivo this protein is associated largely with the myelin membrane: experiments have therefore been performed to determine the structure of the protein when bound to lipid bilayers. Circular dichroism spectra show that this protein undergoes a major conformational change on binding to lipid bilayer vesicles formed from diacylphosphatidylserine or diacylphosphatidic acid, and on binding to micelles of several detergents. Association with diacylphosphatidylcholine failed to induce a structural change: this observation is interpreted in terms of an earlier report that lysophosphatidylcholine does increase the alpha-helical content of basic protein. These circular dichroism measurements and studies of the binding to the bilayer-forming lipids appear to provide support for significant hydrophobic lipid-protein interactions. Similar studies using two peptides produced by cleavf basic protein indicate that a major structure-forming region in the middle of the protein has been disrupted by this scission.  相似文献   

2.
The hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine([125I]TID) was used to label myelin basic protein or polylysine in aqueous solution and bound to lipid vesicles of different composition. Although myelin basic protein is a water soluble protein which binds electrostatically only to acidic lipids, unlike polylysine it has several short hydrophobic regions. Myelin basic protein was labeled to a significant extent by TID when in aqueous solution indicating that it has a hydrophobic site which can bind the reagent. However, myelin basic protein was labeled 2-4-times more when bound to the acidic lipids phosphatidylglycerol, phosphatidylserine, phosphatidic acid, and cerebroside sulfate than when bound to phosphatidylethanolamine, or when in solution in the presence of phosphatidylcholine vesicles. It was labeled 5-7-times more than polylysine bound to acidic lipids. These results suggest that when myelin basic protein is bound to acidic lipids, it is labeled from the lipid bilayer rather than from the aqueous phase. However, this conclusion is not unequivocal because of the possibility of changes in the protein conformation or degree of aggregation upon binding to lipid. Within this limitation the results are consistent with, but do not prove, the concept that some of its hydrophobic residues penetrate partway into the lipid bilayer. However, it is likely that most of the protein is on the surface of the bilayer with its basic residues bound electrostatically to the lipid head groups.  相似文献   

3.
Lipid composition of myelin fractions isolated from Lewis rats during the early stage of the development of experimental allergic encephalomyelitis (EAE) were determined by high-performance thin layer chromatography (HPTLC). When comparing the myelin fractions of EAE-affected animals with those of controls, the main differences were observed in the light fraction, where a decrease in the percentage of phospholipids (PH) relative to the total lipids was observed. These findings give further support that the light myelin fraction being the most sensitive at the onset of clinical symptoms must play a key role in demyelinating process.Abbreviations used EAE experimental allergic encephalomyelitis - PH phospholipids - CH cholesterol - GL galactolipid - PE phosphatidylethanolamine - SPM sphingomyelin - PC phosphatidylcholine - PS phosphatidylserine - PI phosphatidylinositol - CB cerebroside - CB-OH hydroxy-cerebroside - SULF sulfatides - BP basic proteins  相似文献   

4.
X-ray diffraction techniques have been used to study the structures of lipid bilayers containing basic proteins. Highly ordered multilayer specimens have been formed by using the Langmuir-Blodgett method in which a solid support is passed through a lipid monolayer held at constant surface pressure at an air/water interface. If the lipid monolayer contains acidic lipids then basic proteins in the aqueous subphase are transferred with the monolayer and incorporated into the multi-membrane stack. X-ray diffraction patterns have been recorded from multilayers of cerebroside sulphate and 40% (molar) cholesterol both with and without polylysine, cytochrome c and the basic protein from central nervous system myelin. Electron density profiles across the membranes have been derived at between 6 A and 12 A resolution. All of the membrane profiles have been placed on an absolute scale of electron density by the isomorphous exchange of cholesterol with a brominated cholesterol analog. The distributions and conformations of the various basic proteins incorporated within the cerebroside sulphate/cholesterol bilayer are very different. Polylysine attaches to the surface of the lipid bilayer as a fully extended chain while cytochrome c maintains its native structure and attaches to the bilayer surface with its short axis approximately perpendicular to the membrane plane. The myelin basic protein associates intimately with the lipid headgroups in the form of an extended molecule, yet its dimension perpendicular to the plane of the membrane of approx. 15 A is consistent with the considerable degree of secondary structure found in solution. In the membrane plane, the myelin basic protein extends to cover an area of about 2500 A2. There is no significant penetration of the protein into the hydrocarbon region of the bilayer or, indeed, beyond the position of the sulphate group of the cerebroside sulphate molecule.  相似文献   

5.
A variety of phases has been studied: those formed by lipids extracted from myelin, the basic myelin proteins A1 (from the central nervous system) and P1 (from the peripheral nervous system) or other basic proteins. A particularly interesting type of phase was observed which consists of one of the basic proteins of myelin, acidic phospholipids and sulphatides; this phase is lamellar and contains two lipid bilayers in its unit cell. The structure of this phase was determined by the pattern recognition technique and by electron microscope observations of OsO4-flxed and freeze-etched preparations. It is formed by two different lipid bilayers, one containing mainly the phospholipids with the hydrocarbon chains in a liquid-like conformation and the other containing mainly the sulphatides with at least one fraction of the chains stiff and hexagonally packed. Under the effect of high temperature, or if cholesterol is added, this phase is replaced by other phases which lack the large repeat. The segregation of the lipids and their specific associations with the basic proteins are discussed in relation to the structure of myelin.  相似文献   

6.
Antimicrobial peptides interact with cell membranes and their selectivity is contingent on the nature of the constituent lipids. Eukaryotic and bacterial membranes are comprised of different proportions of a range of lipid species with different physical properties. Hence, characterisation of antimicrobial peptides with respect to the magnitude of their interactions with model membranes of different lipid types is needed. Maculatin 1.1 is a short antimicrobial peptide secreted from the skin of several Australian tree-frog species. Circular dichroism spectroscopy (CD) was used to explore the interaction of maculatin 1.1 with a wide range of model membrane systems of different head group and acyl chain characteristics. For neutral phosphatidylcholine (PC), unlike anionic phospholipids, the magnitude of the peptide interactions was dependent on the length and degree of saturation of the constituent acyl chains. Oriented circular dichroism (OCD) data indicated that helical structure was likely promoted by peptide insertion into the hydrophobic core of PC bilayers. The addition of cholesterol (30% mol/mol) tended to decrease the membrane interaction of maculatin 1.1. Anionic lipids locked maculatin 1.1 via electrostatic interactions onto the surface of oriented bilayers as seen in OCD spectra. Furthermore, increasing the membrane curvature by reducing the vesicle radii only slightly reduced the proportion of helical structure in all systems by approximately 10%. The peptide-lipid interaction was strongly dependent on both the lipid chain length and head group, which highlights the importance of the lipid composition used to mimic different cell types. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

7.
8.
The molecular organization, interactions, phase state and membrane-membrane interactions of model membranes containing cerebroside (GalCer), sulfatide (Sulf) and myelin basic protein (MBP) were investigated. Sulf shows a larger cross-sectional area than GalCer, in keeping with the lateral electrostatic repulsions in the negatively charged polar head group. The interactions of GalCer with different phospholipids are similar while those with Sulf depend on the phosphoryl choline moiety in the phospholipid. MBP induces a decrease of the phase transition temperature in both lipids but with Sulf this occurs at lower proportions of MBP. In mixtures of Sulf with phosphatidylcholine MBP induces phase separation among Sulf-rich and PC-rich domains. Extensive apposition of bilayers containing Sulf is induced by MBP while GalCer interferes with this process. Few membrane interactions proceed to bilayer merging or whole bilayer fusion and the glycosphingolipids help preserve the membrane integrity.  相似文献   

9.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   

10.
The enhancement of fluorescence emission from the tryptophan residue of glucagon, the quenching of that emission with acrylamide and with 5-doxyl and 16-doxyl stearic acid, circular dichroism spectra, the release of 6-carboxyfluorescein, and polarized infrared attenuated total reflection (IR-ATR) spectra were used to study the interaction of glucagon with intact lipid vesicles and flat bilayers. Dimyristoylphosphatidylcholine bound the peptide only below the main transition temperature, thus confirming earlier results of Epand et al. (1977). However, the peptide is also bound by vesicles of unsaturated lipids above their transition temperature, suggesting an influence of lipid area on the binding process. Circular dichroism showed that binding to such vesicles also increases the helix content of glucagon. The IR-ATR study and a comparison with dynorphin-A-(1-13)-tridecapeptide revealed profound differences in orientation of the two peptides. The dichroic ratios and the derived order parameters indicated an isotropic orientation of the helical segments of glucagon, but did not exclude a principal orientation of the molecules lying flat on the membrane surface. In contrast, the axis of the dynorphin helix is clearly oriented normal to the interface. The two peptides also differ in their rates of 6-carboxyfluorescein release, suggesting a deeper penetration of the primary amphiphilic helix of dynorphin A-(1-13) than of the secondary amphiphilic helix of glucagon.  相似文献   

11.
Summary The ability of native and chemically modified myelin basic protein to induce fusion of chicken erythrocytes and to interact with lipids in monolayers at the air-water interface and liposomes was studied. Chemical modifications of myelin basic protein were performed by acetylation and succinylation: the positive charges of the native protein were blocked to an extent of about 90–95%.Cellular aggregation and fusion of erythrocytes into multinucleated cells was induced by the native myelin basic protein. This effect was diminished for both acetylated and succinylated myelin basic protein. Native myelin basic protein penetrated appreciably in sulphatide-containing lipid monolayers while lower penetration occurred in monolayers of neutral lipids. Contrary to this, both chemically modified myelin basic proteins did not show any selectivity to penetrate into interfaces of neutral or negatively charged lipids. The intrinsic fluorescence of the native and chemically modified myelin basic proteins upon interacting with liposomes constituted by dipalmitoylphosphatidycholine, glycosphingolipids, egg phosphatidic acid or dipalmitoylphosphatidyl glycerol was studied. The interaction with liposomes of anionic lipids is accompanied by a blue shift of the maximum of the native protein emission fluorescence spectrum from 346 nm to 335 nm; no shift was observed with liposomes containing neutral lipids. The acetylated and succinylated myelin basic proteins did not show changes of their emission spectra upon interacting with any of the lipids studied. The results obtained in monolayers and the fluorescence shifts indicate a lack of correlation between the ability of the modified proteins to penetrate lipid interfaces and the microenvironment sensed by the tryptophan-containing domain.Abbreviations MBP myelin basic protein - DPPC dipalmitoyl phosphatidylcholine - DPPG dipalmitoyl phosphatidylglycerol - PA phosphatidic acid  相似文献   

12.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9685-9691
Electron spin resonance (ESR) spectroscopy and chemical binding assays were used to study the interaction of bovine spinal cord myelin basic protein (MBP) with dimyristoylphosphatidylglycerol (DMPG) membranes. Increasing binding of MBP to DMPG bilayers resulted in an increasing motional restriction of PG spin-labeled at the C-5 atom position in the acyl chain, up to a maximum degree of association of 1 MBP molecule per 36 lipid molecules. ESR spectra of PG spin-labels labeled at other positions in the sn-2 chain showed a similar motional restriction, while still preserving the chain flexibility gradient characteristic of fluid lipid bilayers. In addition, labels at the C-12 and C-14 atom positions gave two-component spectra, suggesting a partial hydrophobic penetration of the MBP into the bilayer. Spectral subtractions were used to quantitate the membrane penetration in terms of the stoichiometry of the lipid-protein complexes. Approximately 50% of the spin-labeled lipid chains were directly affected at saturation protein binding. The salt and pH dependence of the ESR spectra and of the protein binding demonstrated that electrostatic interaction of the basic residues of the MBP with the PG headgroups is necessary for an effective association of the MBP with phospholipid bilayers. Binding of the protein, and concomitant perturbation of the lipid chain mobility, was reduced as the ionic strength increased, until at salt concentrations above 1 M NaCl the protein was no longer bound. The binding and ESR spectral perturbation also decreased as the protein charge was reduced by pH titration to above the pI of the protein at approximately pH 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
alpha-Helical transmembrane peptides, named WALP, with a hydrophobic sequence of leucine and alanine of varying length bordered at both ends by two tryptophans as membrane anchors, were synthesized to study the effect of hydrophobic matching in lipid bilayers. WALPs of 13-, 16-, and 19-residues were incorporated into 1,2-dilauroyl-sn-glycero-3-phosphocholine (12C), 1,2-tridecanoyl-sn-glycero-3-phosphocholine (13C), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (14C) bilayers in the form of oriented multilayers. Oriented circular dichroism spectra and x-ray diffraction patterns showed that the peptides were homogenously distributed in the lipid bilayers with the helical axes oriented approximately normal to the plane of bilayers. But in all cases, x-ray diffraction showed that the peptides did not alter the thickness of the bilayer. This is contrary to the case of gramicidin where 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dilauroyl-sn-glycero-3-phosphocholine clearly thinned and thickened, respectively, to approach the hydrophobic thickness of the gramicidin channels. The result seems to indicate that the packing of lipid chains around a single helix is fundamentally different from the way the chains pack against a large protein surface.  相似文献   

14.
The great variety of different lipids in membranes, with modifications to the hydrocarbon chains, polar groups and backbone structure suggests that many of these lipids may have unique roles in membrane structure and function. Acidic groups on lipids are clearly important, since they allow interaction with basic groups on proteins and with divalent cations. Another important property of certain lipids is their ability to interact intermolecularly with other lipids via hydrogen bonds. This interaction occurs through acidic and basic moieties in the polar head groups of phospholipids, and the amide moiety and hydroxyl groups on the acyl chain, sphingosine base and sugar groups of sphingo- and glycolipids. The putative ability of different classes of lipids to interact by intermolecular hydrogen bonding, the molecular groups which may participate and the effect of these interactions on some of their physical properties are summarized in Table IX. It is frequently questioned whether intermolecular hydrogen bonding could occur between lipids in the presence of water. Correlations of their properties with their molecular structures, however, suggest that it can. Participation in intermolecular hydrogen bonding increases the lipid phase transition temperature by approx. 8-16 Cdeg relative to the electrostatically shielded state and by 20-30 Cdeg relative to the repulsively charged state, while having variable effects on the enthalpy. It increases the packing density in monolayers, possibly also in the liquid-crystalline phase in bilayers, and decreases the lipid hydration. These effects can probably be accounted for by transient, fluctuating hydrogen bonds involving only a small percentage of the lipid at any one time. Thus, rotational and lateral diffusion of the lipids may take place but at a slower rate, and the lateral expansion is limited. Intermolecular hydrogen bonding between lipids in bilayers may be significantly stabilized, despite the presence of water, by the fact that the lipids are already intermolecularly associated as a result of the hydrophobic effect and the Van der Waals' interactions between their chains. The tendency of certain lipids to self-associate, their asymmetric distribution in SUVs, their preferential association with cholesterol in non-cocrystallizing mixtures, their temperature-induced transitions to the hexagonal phase and their inhibitory effect on penetration of hydrophobic residues of proteins partway into the bilayer can all be explained by their participation in intermolecular hydrogen bonding interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Immunofluorescence and electron microscopical studies on the intracellular distribution of intermediate filaments (IFs) have demonstrated a close proximity of these cytoskeletal structures to cellular membranes. Moreover, nonepithelial IF (protein)s have been shown to exhibit high affinities for lipids, especially for negatively charged and nonpolar lipids. Here, using hydrophobic labeling with the photoactivatable phosphatidylcholine analogue [3H]1-palmitoyl-2-[11-[4-(trifluoromethyldiazirinyl]undecanoyl+ ++]-sn- glycero-3-phosphorylcholine or with 1-azidopyrene at low and physiological ionic strength, it is demonstrated that the IF subunit protein vimentin can interact with the hydrophobic core of lipid bilayers, in addition to strong ionic relationships between both reactants. Whereas the presence of acidic phospholipids in the lipid vesicles was absolutely essential for efficient vimentin labeling, cholesterol played a synergistic role in this reaction. Proteolytic degradation of photolabeled vimentin localized the derivatization exclusively to the non-alpha-helical, highly positively charged N-terminal domain of the filament protein. Furthermore, circular dichroism studies performed on the isolated N terminus of vimentin revealed a significant increase in the alpha-helical content of the polypeptide upon its interaction with vesicles containing negatively charged phospholipids. These results indicate an amphiphilic character of the N terminus and suggest that the cationic arginine residues of the N-terminal domain react with the negatively charged head groups of acidic phospholipids prior or parallel to interaction of the polypeptide with hydrophobic regions of the lipid bilayer.  相似文献   

16.
The tryptic hydrolysis of the basic protein of central nervous system myelin (A1 basic protein) and of A1 basic-lipid complexes was studied. The tryptic digestion was monitored by “finger printing”, column chromatography and amino acid analysis of the resulting pure peptides.Specific regions of the protein sequence were found to be protected from the hydrolytic action of the trypsin only after the protein was recombined with specific lipids. The degree of protection was in the order: cerebroside sulphate > acidic lipid fraction of myelin > phosphatidylsrine = total lipid extract of myelin. The protected Lys-X, Arg-X bonds were all situated in the region amino acid 20 to amino acid 113 of the intact protein. This region contains the (proline)3 bend in the protein which is stabilized by interaction with lipids and also the encephalitogenic site for monkey and rabbit.From the results reported in this publication we would like to suggest a specific interaction between a region of the A1 basic protein molecule and cerebroside sulphate. Differences in A1 basic protein-lipid interaction in different animals arising from differences in lipid composition and fatty acid composition of the different lipid species combined with minor changes in the protein sequence could explain the species variability of the encephalitogenic sites of the A1 basic protein.  相似文献   

17.
Myelin basic protein derived from bovine spinal cord has been interacted with liposomes of varying brain lipid compositions. The effects of salt and protein concentration on liposome cross linking has been investigated. It appears that myelin basic protein cannot link liposomes composed of brain-derived phosphatidyl choline. Myelin basic protein can link liposomes composed of phosphatidyl serine; phosphatidyl serine + cholesterol; phosphatidyl serine + cholesterol + cerebroside sulphate. Linking of liposomes occurs at protein concentrations lower than those required for myelin basic protein dimers to be formed. Therefore, it seems that the monomeric form of myelin basic protein links lipid bilayers. The presence of cholesterol in the bilayer increases the ability of myelin basic protein to aggregate such liposomes compared with the linking ability of the polycationic polypeptide, poly-l-lysine.  相似文献   

18.
The interactions of zwitterionic phospholipids phosphatidylcholine and phosphatidylethanolamine with protein proteinase inhibitors aprotinin and Bowman-Birk soybean proteinase inhibitor have been investigated. An increase in the hydrophobicity of the liposome surface was shown to be an important factor for the formation of proteoliposomes. According to 31P-NMR spectra, incorporation of the proteins into the liposomes does not influence the structural organization of the surface of the liposomes. Increasing the ionic strength does not inhibit the process of proteoliposome formation. Fluorescence assay of the complexes of anthracene-labeled phospholipids with the rhodamine B-labeled protein showed that after the encapsulation into the liposomes, the protein is located inside the particles and between the bilayers. Also, the effect of phospholipids with saturated fatty acid residues on the protein-lipid interaction was studied by differential scanning calorimetry. The results indicate that water-soluble proteins efficiently interact with zwitterionic phospholipids, and the encapsulation of the proteins into the liposomes is provided by electrostatic and hydrophobic forces (in the case of aprotinin) or predominantly by hydrophobic forces (Bowman-Birk soybean proteinase inhibitor).  相似文献   

19.
Predicted Folding of β-Structure in Myelin Basic Protein   总被引:12,自引:10,他引:2  
Predictions of myelin basic protein secondary structure have not previously considered a major role for beta-structure in the organization of the native molecule because optical rotatory dispersion and circular dichroism studies have provided little, if any, evidence for beta-structure, and because a polycationic protein is generally considered to resist folding into a compact structure. However, the Chou-Fasman, Lim, and Robson algorithms identify a total of five beta-strands in the amino acid sequence. Four of these hydrophobic amino acid sequences (37-45, 87-95, 110-118, and 150-158) could form a hairpin intermediate that initiates folding of a Greek-key-type beta-structure. A second fold on the more hydrophobic side, with the addition of a strand from the N-terminus (residues 13-21), would complete the five-stranded antiparallel beta-sheet. A unique strand alignment can be predicted by phasing the hydrophobic residues. The unusual triproline sequence of myelin basic protein (100-102) is enclosed in the 14-residue hairpin loop. If these prolines are in the trans conformation, models show that a reverse turn could occur at residues 102-105 (Pro-Ser-Gln-Gly). Algorithms do not agree on the prediction of alpha-helices, but each of the two large loops could accommodate an alpha-helix. Myelin basic protein is known to be phosphorylated in vivo on as many as five Ser/Thr residues. Phosphorylation might alter the dynamics of folding if the nascent polypeptide were phosphorylated in the cytoplasm. In particular, phosphorylation of Thr-99 could neutralize cationic residues Lys-106 and Arg-108 within the hairpin loop. In addition, the methylation of Arg-108 might stabilize the hairpin loop structure through hydrophobic interaction with the side chain of Pro-97. The cationic side chains of arginine and lysine residues located on the faces of the beta-sheet (Arg-43, Arg-114, Lys-13, Lys-92, Lys-153, and Lys-156) could provide sites for interaction with phospholipids and other anionic structures on the surface of the myelin lipid bilayer.  相似文献   

20.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号