首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence.  相似文献   

2.
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio‐temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot‐level variation in mortality (relative to a long‐term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1–5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data‐constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long‐term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least‐ and most‐disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long‐term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early‐successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature.  相似文献   

3.
Drought- and heat-driven tree mortality, along with associated insect outbreaks, have been observed globally in recent decades and are expected to increase in future climates. Despite its potential to profoundly alter ecosystem carbon and water cycles, how tree mortality scales up to ecosystem functions and fluxes is uncertain. We describe a framework for this scaling where the effects of mortality are a function of the mortality attributes, such as spatial clustering and functional role of the trees killed, and ecosystem properties, such as productivity and diversity. We draw upon remote-sensing data and ecosystem flux data to illustrate this framework and place climate-driven tree mortality in the context of other major disturbances. We find that emerging evidence suggests that climate-driven tree mortality impacts may be relatively small and recovery times are remarkably fast (~4 years for net ecosystem production). We review the key processes in ecosystem models necessary to simulate the effects of mortality on ecosystem fluxes and highlight key research gaps in modeling. Overall, our results highlight the key axes of variation needed for better monitoring and modeling of the impacts of tree mortality and provide a foundation for including climate-driven tree mortality in a disturbance framework.  相似文献   

4.

Background and Aims

During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale.

Methods

The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes.

Key Results

The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself.

Conclusions

Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure.  相似文献   

5.
6.
Metabolic regulation in bacterial continuous cultures: II   总被引:1,自引:0,他引:1  
The transient behavior of a continuous culture of Klebsiella pneumoniae with mixed feed of glucose and xylose arising from step-up and step-down in dilution rates and from a feed-switching experiment is presented. he organism gradually switches from simultaneous utilization of the substrates at low growth rates to preferred utilization of the faster substrate (i.e, supporting a higher growth rate) at high dilution rates. The metabolic lags following a step increase in dilution rate and a significant accumulation of the slower substrate during the transient period result from the effects of metabolic regulation. The cybernetic modeling approach that successfully described the foregoing situations with single-substrate feeds is employed to describe mixed substrate behavior. The parameters in the mixed-substrate (glucose and xylose) model are the same as those in the single-substrate models with the singular exception of the rate constant for the xylose growth enzyme synthesis. The reason for this discrepancy is discussed in detail. It appears that the constitutive rate of enzyme synthesis for growth on a given substrate may be related to the past history of the organism in regard to whether or not the organism has been exposed to the particular substrate. Thus, the results further demonstrate the ability of the framework to effectively describe metabolic regulation in batch, fedbatch, and continuous microbial cultures.  相似文献   

7.
Epiphytic plants are important components of the forest ecosystem, but little is known about their ecology due to logistical constraints and the lack of a conceptual framework to guide epiphyte community studies. Given the present state of knowledge and renewed interests in epiphyte community studies, a mechanistic framework is needed to guide investigations of epiphyte assemblages. This article identifies six putative mechanisms of epiphyte species diversity, and highlights possible direct and indirect linkages among the mechanisms. The mechanisms include constrained dispersal, slow growth rate, substrate availability, host tree mortality, disturbance, and global climate change. They are identified as inherent, local- and stand-level, and landscape-level mechanisms. Evidence supporting the proposed mechanisms and their linkages is typically inductive due to inadequate observational and manipulative studies. Sufficient testing and experimental manipulations over broad spatial and temporal scales are necessary for future predictions of epiphytic plant diversity patterns.  相似文献   

8.
Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20‐year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait‐based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests.  相似文献   

9.
过程机理模型在开发过程中常受限于生理学参数无法直接或准确测量.全局灵敏度分析可以评估模型预测结果对于生理学参数变化的响应,为模型结构改进、数据收集和参数校准提供参考.本研究基于过程模型CROBAS,以华山松为例,选取模型中描述树木结构关系的10个参数,以树高和各器官生物量的Nash-Sutcliffe效率(NSE)为目...  相似文献   

10.
Among organisms with determinate growth, optimization models predict that reproductive effort should increase as individuals approach old age, but the assumptions of these models may be inappropriate because the senescence that generates the necessary selective pressure may be not itself be optimal. Population genetics models were constructed to examine whether genes for age-specific changes in reproductive effort could invade a population in which senescence was maintained at equilibrium levels by a balance between mutation and selection. In asexually reproducing organisms, it was found that strategies of increasing reproductive effort could not normally invade the population. In sexually reproducing organisms, however, recombination was found to be important and genes for age-specific changes in effort could spread in the population under most circumstances.  相似文献   

11.
We developed an individual-based stochastic-empirical model to simulate the carbon dynamics of live and dead trees in a Central Amazon forest near Manaus, Brazil. The model is based on analyses of extensive field studies carried out on permanent forest inventory plots, and syntheses of published studies. New analyses included: (1) growth suppression of small trees, (2) maximum size (trunk base diameter) for 220 tree species, (3) the relationship between growth rate and wood density, and (4) the growth response of surviving trees to catastrophic mortality (from logging). The model simulates a forest inventory plot, and tracks recruitment, growth, and mortality of live trees, decomposition of dead trees (coarse litter), and how these processes vary with changing environmental conditions. Model predictions were tested against aggregated field data, and also compared with independent measurements including maximum tree age and coarse litter standing stocks. Spatial analyses demonstrated that a plot size of ~10 ha was required to accurately measure wood (live and dead) carbon balance. With the model accurately predicting relevant pools and fluxes, a number of model experiments were performed to predict forest carbon balance response to perturbations including: (1) increased productivity due to CO2 fertilization, (2) a single semi-catastrophic (10%) mortality event, (3) increased recruitment and mortality (turnover) rates, and (4) the combined effects of increased turnover, increased tree growth rates, and decreased mean wood density of new recruits. Results demonstrated that carbon accumulation over the past few decades observed on tropical forest inventory plots (~0.5 Mg C ha–1 year–1) is not likely caused by CO2 fertilization. A maximum 25% increase in woody tissue productivity with a doubling of atmospheric CO2 only resulted in an accumulation rate of 0.05 Mg C ha–1 year–1 for the period 1980–2020 for a Central Amazon forest, or an order of magnitude less than observed on the inventory plots. In contrast, model parameterization based on extensive data from a logging experiment demonstrated a rapid increase in tree growth following disturbance, which could be misinterpreted as carbon sequestration if changes in coarse litter stocks were not considered. Combined results demonstrated that predictions of changes in forest carbon balance during the twenty-first century are highly dependent on assumptions of tree response to various perturbations, and underscores the importance of a close coupling of model and field investigations.  相似文献   

12.
The mechanisms governing tree drought mortality and recovery remain a subject of inquiry and active debate given their role in the terrestrial carbon cycle and their concomitant impact on climate change. Counter‐intuitively, many trees do not die during the drought itself. Indeed, observations globally have documented that trees often grow for several years after drought before mortality. A combination of meta‐analysis and tree physiological models demonstrate that optimal carbon allocation after drought explains observed patterns of delayed tree mortality and provides a predictive recovery framework. Specifically, post‐drought, trees attempt to repair water transport tissue and achieve positive carbon balance through regrowing drought‐damaged xylem. Furthermore, the number of years of xylem regrowth required to recover function increases with tree size, explaining why drought mortality increases with size. These results indicate that tree resilience to drought‐kill may increase in the future, provided that CO2 fertilisation facilitates more rapid xylem regrowth.  相似文献   

13.
Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage and cycling, we examined stands of known disturbance history in three landscapes of the southern Rocky Mountains. Our objectives were to assess the similarity between carbon stocks and fluxes for these three landscapes that differed in climate and disturbance history, characterize the relationship between observed tree age and time since disturbance and quantify the predictive capability of tree age or time since disturbance on carbon stocks and fluxes. Carbon pools and fluxes were remarkably similar across the three landscapes, despite differences in elevation, climate, species composition, disturbance history, and forest age. Observed tree age was a poor predictor of time since disturbance. Maximum tree age overestimated time since disturbance for young forests and underestimated it for older forests. Carbon pools and fluxes were related to both tree age and disturbance history, but the relationships differed between these two predictors and were generally less variable for pools than for fluxes. Using tree age in a relationship developed with time since disturbance or vice versa increases errors in estimates of carbon stocks or fluxes. Little change in most carbon stocks and fluxes occurs after the first 100 years following stand‐replacing disturbance, simplifying landscape scale estimates. We conclude that subalpine forests in the Central Rocky Mountains can be treated as a single forest type for the purpose of assessment and modeling of carbon, and that the critical period for change in carbon is < 100 years.  相似文献   

14.
Thermodynamic methods to predict true yield and stoichiometry of bacterial reactions have been widely used in biotechnology and environmental engineering. However, yield predictions are often inaccurate for certain simple organic compounds. This work evaluates an existing method and identifies the cause of prediction errors for compounds with low degree of reductance of carbon. For these compounds, carbon, not energy or reducing equivalents, constrains growth. Existing thermodynamically-based models do not account for the potential of carbon-limited growth. The improved method described here consists of four balances: carbon balance, nitrogen balance, electron balance, and energy balance. Two efficiency terms, K1 and K2 are defined and estimated from a priori analysis. The results show that K1 and K2 are nearly the same in value so that only one coefficient, K = 0.41 is used in the modified model. Comparisons with observed yields show that use of the new model and parameters results in significantly improved yield estimation based on inclusion of the carbon balance. The average estimation error is less than 6% for the data set presented.  相似文献   

15.
火干扰与生态系统的碳循环   总被引:18,自引:0,他引:18  
吕爱锋  田汉勤  刘永强 《生态学报》2005,25(10):2734-2743
火干扰是陆地生态系统碳循环的重要影响因子。它改变着整个系统的碳循环过程与碳分布格局。正确评估火干扰在碳循环过程中的作用,对推进全球碳循环研究有着重要的意义。从4个方面系统的回顾了火干扰对碳循环的影响过程及其研究方法:(1)火烧过程中含碳痕量气体排放的估算;(2)火烧迹地恢复过程中净第一性生产力(NPP)与土壤呼吸的变化;(3)火干扰对生态系统碳源/汇的影响;(4)模型方法在火干扰与生态系统碳循环研究中的应用。目前火灾碳排量的估算方法业已成熟,但进行更精确的估算必须基于对受干扰生态系统的性质以及火势的时空变异性质的准确理解;相比之下,对于间接的、更为重要的影响,即对火烧迹地恢复过程中碳循环变化的研究则显不足。由于数据缺乏,现有研究大多限于对碳循环某一方面的观测与定量描述,缺乏全面的机理性分析。对此,实地观测、模型模拟与遥感观测的跨尺度集成将成为未来火干扰研究的一个主要方向。  相似文献   

16.
Coloniality has mainly been studied from an evolutionary perspective, but relatively few studies have developed methods for modelling colony dynamics. Changes in number of colonies over time provide a useful tool for predicting and evaluating the responses of colonial species to management and to environmental disturbance. Probabilistic Markov process models have been recently used to estimate colony site dynamics using presence–absence data when all colonies are detected in sampling efforts. Here, we define and develop two general approaches for the modelling and analysis of colony dynamics for sampling situations in which all colonies are, and are not, detected. For both approaches, we develop a general probabilistic model for the data and then constrain model parameters based on various hypotheses about colony dynamics. We use Akaike's Information Criterion (AIC) to assess the adequacy of the constrained models. The models are parameterised with conditional probabilities of local colony site extinction and colonization. Presence–absence data arising from Pollock's robust capture–recapture design provide the basis for obtaining unbiased estimates of extinction, colonization, and detection probabilities when not all colonies are detected. This second approach should be particularly useful in situations where detection probabilities are heterogeneous among colony sites. The general methodology is illustrated using presence–absence data on two species of herons. Estimates of the extinction and colonization rates showed interspecific differences and strong temporal and spatial variations. We were also able to test specific predictions about colony dynamics based on ideas about habitat change and metapopulation dynamics. We recommend estimators based on probabilistic modelling for future work on colony dynamics. We also believe that this methodological framework has wide application to problems in animal ecology concerning metapopulation and community dynamics.  相似文献   

17.
18.
The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree‐ring sites located across Europe are investigated to determine the intrinsic water‐use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX‐Bern 1.0) that integrates numerous ecosystem and land–atmosphere exchange processes in a theoretical framework. The spatial pattern of tree‐ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south‐to‐north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil‐water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation–climate feedbacks are currently still poorly constrained by observational data.  相似文献   

19.
Dynamic models of tree root growth and function have to reconcile the architectural rules for coarse root topology with the dynamics of fine root growth (and decay) in order to predict the strategic plus opportunistic behaviour of a tree root system in a heterogeneous soil. We present an algorithm for a 3D model based on both local (soil voxel level) and global (tree level) controls of root growth, with development of structural roots as a consequence of fine root function, rather than as driver. The suggested allocation rules of carbon to fine root growth in each rooted voxel depend on the success in water uptake in this voxel during the previous day, relative to overall supply and demand at plant level. The allocated C in each voxel is then split into proliferation (within voxel growth) and extension into neighbouring voxels (colonisation), with scale-dependent thresholds and transfer coefficients. The fine root colonisation process defines a dynamic and spatially explicit demand for transport functions. C allocation to development of a coarse root infrastructure linking all rooted voxels depends on the apparent need for adjustment of root diameter to meet the topologically defined sap flow through this voxel during the previous day. The allometric properties of the coarse root system are maintained to be in line with fractal branching theory. The model can predict the dynamics of the shape and structure (fine root density, coarse root topology and biomass) of the root system either independently of soil conditions (purely genetically-driven) or including both the genetic and environmental effects of roots interacting with soil water supply and its external replenishment, linking in with existing water balance models. Sensitivity of the initial model to voxel dimensions was addressed through explicit scaling rules resulting in scale-independent parameters. The model was parameterised for two tree species: hybrid walnut (Juglans nigra × regia) and wild cherry (Prunus avium L.) using results of a pot experiment. The model satisfactorily predicted the root growth behaviour of the two species. The model is sparse in parameters and yet applicable to heterogeneous soils, and could easily be upgraded to include additional local influences on root growth (and decay) such as local success in nutrient uptake or dynamic soil physical properties.  相似文献   

20.
The cybernetic framework developed by Ramkrishna and co-workers is shown to encompass the regulation of nutrient transport processes as well as the effect of nutrient transport on the biotic phase. A structured model which accounts for both an abiotic or environmental phase and a biotic or cellular phase is proposed to describe bacterial growth on lactose as the limiting carbon and energy source. In the presence of lactose, competing uptake mechanisms are proposed. At low lactose concentrations, an energy-requiring transport process is the preferred uptake mechanism. The coupling between cellular energetics and nutrient uptake results in an interesting intermittent growth phenomenon. As the concentration of lactose increases, a nonenergetic transport process is preferred and cellular growth ceases to be intermittent. Model simulations are compared with previously reported experimental results and exhibit good agreement over the entire range of initial lactose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号