首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA topoisomerase II uses a complex, sequential mechanism of ATP hydrolysis to catalyze the transport of one DNA duplex through a transient break in another. ICRF-193 is a catalytic inhibitor of topoisomerase II that is known to trap a closed-clamp intermediate form of the enzyme. Using steady-state and rapid kinetic ATPase and DNA transport assays, we have analyzed how trapping this intermediate by the drug perturbs the topoisomerase II mechanism. The drug has no effect on the rate of the first turnover of decatenation but potently inhibits subsequent turnovers with an IC(50) of 6.5 +/- 1 microM for the Saccharomyces cerevisiae enzyme. This drug inhibits the ATPase activity of topoisomerase II by an unusual, mixed-type mechanism; the drug is not a competitive inhibitor of ATP, and even at saturating concentrations of drug, the enzyme continues to hydrolyze ATP, albeit at a reduced rate. Topoisomerase II that was specifically isolated in the drug-bound, closed-clamp form continues to hydrolyze ATP, indicating that the enzyme clamp does not need to re-open to bind and hydrolyze ATP. When rapid-quench ATPase assays were initiated by the addition of ATP, the drug had no effect on the sequential hydrolysis of either the first or second ATP. By contrast, when the drug was prebound, the enzyme hydrolyzed one labeled ATP at the uninhibited rate but did not hydrolyze a second ATP. These results are interpreted in terms of the catalytic mechanism for topoisomerase II and suggest that ICRF-193 interacts with the enzyme bound to one ADP.  相似文献   

2.
J A Evans  E Eisenberg 《Biochemistry》1989,28(19):7741-7747
Considerable effort has been devoted to understanding the mechanism of 18O exchange in skinned skeletal and insect muscle fibers. However, a full understanding of the mechanism of 18O exchange in muscle fibers requires an understanding of the mechanism of 18O exchange in the simpler in vitro systems employing myosin subfragment 1 (S-1) and heavy meromyosin (HMM). In the present study, using both S-1 and S-1 covalently cross-linked to actin, we show first that over a wide range of temperature, ionic strength, and actin concentration there is only one pathway of 18O exchange with S-1. This is also the case with HMM except at very low ionic strength and low actin concentration, and even here, the data can be explained if 20% of the HMM is denatured in such a way that it shows no 18O exchange. Our results also show that actin markedly decreases the rate of 18O exchange. If it is assumed that Pi release is rate limiting, the four-state kinetic model of the actomyosin ATPase cannot fit these 18O exchange data. However, if it is assumed that the ATP hydrolysis step is rate limiting and Pi release is very fast, the four-state kinetic model can qualitatively fit these data although the fit is not perfect. A better fit to the 18O exchange data can be obtained with the six-state kinetic model of the actomyosin ATPase, but this fit requires the assumption that, at saturating actin concentration, the rate of Pi rotation is about 9-fold slower than the rate of reversal of the ATP hydrolysis step.  相似文献   

3.
Type IIA DNA topoisomerases play multiple essential roles in the management of higher-order DNA structure, including modulation of topological state, chromosome segregation, and chromatin condensation. These diverse physiologic functions are all accomplished through a common molecular mechanism, wherein the protein catalyzes transient cleavage of a DNA duplex (the G-segment) to yield a double-stranded gap through which another duplex (the T-segment) is passed. The overall process is orchestrated by the opening and closing of molecular "gates" in the topoisomerase structure, which is regulated by ATP binding, hydrolysis, and release of ADP and inorganic phosphate. Here we present two crystal structures of the ATPase domain of human DNA topoisomerase IIalpha in different nucleotide-bound states. Comparison of these structures revealed rigid-body movement of the structural modules within the ATPase domain, suggestive of the motions of a molecular gate.  相似文献   

4.
Topoisomerase II-catalyzed DNA transport requires coordination between two distinct reactions: ATP hydrolysis and DNA cleavage/religation. To further understand how these reactions are coupled, inhibition by the clinically used anticancer drug etoposide was studied. The IC(50) for perturbing the DNA cleavage/religation equilibrium is nucleotide-dependent; its value is 6 microM in the presence of ATP, 25 microM in the presence of a nonhydrolyzable ATP analog, and 45 microM in the presence of ADP or no nucleotide. This inhibition was further characterized using steady-state and pre-steady-state ATPase and decatenation assays. Etoposide is a hyperbolic noncompetitive inhibitor of the ATPase activity with a K(i)(app) of 5.6 microM no inhibition of ATP hydrolysis is seen in the absence of DNA cleavage. In order to determine which steps of the ATPase mechanism etoposide inhibits, pre-steady-state analysis was performed. These results showed that etoposide does not reduce the rate of binding two ATP, hydrolyzing the first ATP, or releasing the second ADP. Inhibition is therefore associated with the first product release step or hydrolysis of the second ATP, suggesting that DNA religation normally occurs at one of these two steps. Multiple turnover decatenation is inhibited when etoposide is present; however, single turnover decatenation occurs normally. The implications of these results are discussed in terms of their contribution to our current model for the topoisomerase II mechanism.  相似文献   

5.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

6.
E L Holzbaur  K A Johnson 《Biochemistry》1989,28(13):5577-5585
The kinetics of the product release steps in the pathway of ATP hydrolysis by dynein were investigated by examining the rate and partition coefficient of phosphate-water 18O exchange under equilibrium and steady-state conditions. Dynein catalyzed both medium and intermediate phosphate-water oxygen exchange with a partition coefficient of 0.30. The dependence of the rate of loss of the fully labeled phosphate species on the concentration of ADP was hyperbolic, with an apparent Kd for the binding of ADP to dynein of 0.085 mM. The apparent second-order rate constant for phosphate binding to the dynein-ADP complex was 8000 M-1 s-1. The time course of medium phosphate-water oxygen exchange during net ATP hydrolysis was examined in the presence of an ATP regeneration system. The observed rate of loss of P18O4 was comparable to the rate observed at saturating ADP which implies that ADP release is rate limiting for dynein in the steady state. Product inhibition of the dynein ATPase was also examined. ADP inhibited the enzyme competitively with a Ki of 0.4 mM. Phosphate was a linear noncompetitive mixed-type inhibitor with a Ki of 11 mM. These data were fit to a model in which phosphate release is fast and is followed by rate-limiting release of ADP, allowing us to define each rate constant in the pathway. A discrepancy between the total free energy calculated compared to the known free energy of ATP hydrolysis suggests that there is an additional step in the pathway, perhaps involving a change in conformation of the enzyme-ADP state preceding ADP release.  相似文献   

7.
Type II DNA topoisomerases can catalyze the transport of one DNA segment through a transient break in another DNA segment by a complex mechanism of ATP hydrolysis. According to the hydrolysis process of two ATPs, a multi-state model is proposed to investigate the work cycle of DNA topoisomerase II. The rate of the opening and closing of the DNA topoisomerase gate is evaluated by determining the release rate of inorganic phosphates. The calculated results show that, under the condition of the high concentration of ATP, the work cycle of DNA topoisomerase II is about 0.84 s which is in agreement with the experimental data.  相似文献   

8.
It has been proposed that xanthone derivatives with anticancer potential act as topoisomerase II inhibitors because they interfere with the ability of the enzyme to bind its ATP cofactor. In order to further characterize xanthone mechanism and generate compounds with potential as anticancer drugs, we synthesized a series of derivatives in which position 3 was substituted with different polyamine chains. As determined by DNA relaxation and decatenation assays, the resulting compounds are potent topoisomerase IIα inhibitors. Although xanthone derivatives inhibit topoisomerase IIα-catalyzed ATP hydrolysis, mechanistic studies indicate that they do not act at the ATPase site. Rather, they appear to function by blocking the ability of DNA to stimulate ATP hydrolysis. On the basis of activity, competition, and modeling studies, we propose that xanthones interact with the DNA cleavage/ligation active site of topoisomerase IIα and inhibit the catalytic activity of the enzyme by interfering with the DNA strand passage step.  相似文献   

9.
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.  相似文献   

10.
The catalytic activity of topoisomerase II is stimulated approximately 2-3-fold following phosphorylation by casein kinase II (Ackerman, P., Glover, C. V. C., and Osheroff, N. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3164-3168). In order to delineate the mechanism by which the activity of the enzyme is enhanced, the effects of casein kinase II-mediated phosphorylation on the individual steps of the catalytic cycle of Drosophila topoisomerase II were characterized. Phosphorylation did not affect reaction steps that preceded hydrolysis of the enzyme's high energy ATP cofactor. This included enzyme-DNA binding, pre-strand passage DNA cleavage/religation, the double-stranded DNA passage event, and post-strand passage DNA cleavage/religation. In contrast, the rate of topoisomerase II-mediated ATP hydrolysis was stimulated 2.7-fold following phosphorylation by casein kinase II. Since ATP hydrolysis is a prerequisite for enzyme turnover, it is concluded that phosphorylation modulates the overall catalytic activity of topoisomerase II by stimulating the enzyme's ATPase activity.  相似文献   

11.
Duplex DNA with a contiguous single-stranded tail was nearly as effective as single-stranded DNA in acting as a cofactor for the ATPase activity of recA protein at neutral pH and concentrations of MgCl2 that support homologous pairing. The ATP hydrolysis reached a steady state rate that was proportional to the length of the duplex DNA attached to a short 5' single-stranded tail after a lag. Separation of the single-stranded tail from most of the duplex portion of the molecule by restriction enzyme cleavage led to a gradual decline in ATP hydrolysis. Measurement of the rate of hydrolysis as a function of DNA concentration for both tailed duplex DNA and single-stranded DNA cofactors indicated that the binding site size of recA protein on a duplex DNA lattice, about 4 base pairs, is similar to that on a single-stranded DNA lattice, about four nucleotides. The length of the lag phase preceding steady state hydrolysis depended on the DNA concentration, length of the duplex region, and the polarity of the single-stranded tail, but was comparatively independent of tail length for tails over 70 nucleotides in length. The lag was 5-10 times longer for 3' than for 5' single-stranded tailed duplex DNA molecules, whereas the steady state rates of hydrolysis were lower. These observations show that, after nucleation of a recA protein complex on the single-stranded tail, the protein samples the entire duplex region via an interaction that is labile and not strongly polarized.  相似文献   

12.
We have measured the rate constant for ATP release from myosin heads of Ca2+-activated, demembranated muscle fibers using the technique of phosphate-water oxygen exchange. Single rabbit psoas fibers were held in an activating solution in [18O]water ([MgATP] = 8 mM, ionic strength = 0.2 M, pH = 7.0, 24 degrees C). After about 20% hydrolysis of ATP, product Pi and remaining ATP were isolated, and the distribution of 18O in both molecules was analyzed using a mass spectrometer. The exchange in Pi was similar to that previously reported (Hibberd, M. G., Webb, M. R., Goldman, Y. E., and Trentham, D. R. (1985) J. Biol. Chem. 260, 3496-3501). The amount of 18O in ATP gave a rate constant of about 4 s-1 for ATP release, if it is assumed that each rate constant in the pathway of ATP hydrolysis has the same value for all myosin ATPase sites. However, the distribution of 18O in both released Pi and ATP is not well explained by a single pathway for ATP hydrolysis. We present a model that indicates how such distributions could arise from a range of values for the rate constants for Pi and ATP release from actomyosin, and this range is determined by differences in the amounts of strain in attached crossbridges. The kinetic information obtained from these isotope exchange experiments is compared to show that they give a compatible set of rate constants for actomyosin in fibers.  相似文献   

13.
In order to study the double-strand DNA passage reaction of eukaryotic type II topoisomerases, a quantitative assay to monitor the enzymic conversion of supercoiled circular DNA to relaxed circular DNA was developed. Under conditions of maximal activity, relaxation catalyzed by the Drosophila melanogaster topoisomerase II was processive and the energy of activation was 14.3 kcal . mol-1. Removal of supercoils was accompanied by the hydrolysis of either ATP or dATP to inorganic phosphate and the corresponding nucleoside diphosphate. Apparent Km values were 200 microM for pBR322 plasmid DNA, 140 microM for SV40 viral DNA, 280 microM for ATP, and 630 microM for dATP. The turnover number for the Drosophila enzyme was at least 200 supercoils of DNA relaxed/min/molecule of topoisomerase II. The enzyme interacts preferentially with negatively supercoiled DNA over relaxed molecules, is capable of removing positive superhelical twists, and was found to be strongly inhibited by single-stranded DNA. Kinetic and inhibition studies indicated that the beta and gamma phosphate groups, the 2'-OH of the ribose sugar, and the C6-NH2 of the adenine ring are important for the interaction of ATP with the enzyme. While the binding of ATP to Drosophila topoisomerase II was sufficient to induce a DNA strand passage event, hydrolysis was required for enzyme turnover. The ATPase activity of the topoisomerase was stimulated 17-fold by the presence of negatively supercoiled DNA and approximately 4 molecules of ATP were hydrolyzed/supercoil removed. Finally, a kinetic model describing the switch from a processive to a distributive relaxation reaction is presented.  相似文献   

14.
Ban C  Junop M  Yang W 《Cell》1999,97(1):85-97
The MutL DNA mismatch repair protein has recently been shown to be an ATPase and to belong to an emerging ATPase superfamily that includes DNA topoisomerase II and Hsp90. We report here the crystal structures of a 40 kDa ATPase fragment of E. coli MutL (LN40) complexed with a substrate analog, ADPnP, and with product ADP. More than 60 residues that are disordered in the apoprotein structure become ordered and contribute to both ADPnP binding and dimerization of LN40. Hydrolysis of ATP, signified by subsequent release of the gamma-phosphate, releases two key loops and leads to dissociation of the LN40 dimer. Dimerization of the LN40 region is required for and is the rate-limiting step in ATP hydrolysis by MutL. The ATPase activity of MutL is stimulated by DNA and likely acts as a switch to coordinate DNA mismatch repair.  相似文献   

15.
The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO3-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-18O]ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH4+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH4+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH4+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH4+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the 31P NMR spectra of the exchanged [gamma-18O]ATP, the distribution patterns of 16O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of [18O3, 16O]Pi does not readily participate. These results suggest that the formation of carbamate from MgATP, HCO3-, and glutamine proceeds via a stepwise, not concerted mechanism, involving at least one kinetically competent covalent intermediate, such as carboxyphosphate.  相似文献   

16.
Mutations of myosin VIIA cause deafness in various species from human and mice to Zebrafish and Drosophila. We analyzed the kinetic mechanism of the ATPase cycle of Drosophila myosin VIIA by using a single-headed construct with the entire neck domain. The steady-state ATPase activity (0.06 s(-1)) was markedly activated by actin to yield V(max) and K(ATPase) of 1.72 s(-1) and 3.2 microm, respectively. The most intriguing finding is that the ATP hydrolysis predominantly takes place in the actin-bound form (actin-attached hydrolysis) for the actomyosin VIIA ATPase reaction. The ATP hydrolysis rate was much faster for the actin-attached form than the dissociated form, in contrast to other myosins reported so far. Both the ATP hydrolysis step and the phosphate release step were significantly faster than the entire ATPase cycle rate, thus not rate-determining. The rate of ADP dissociation from actomyosin VIIA was 1.86 s(-1), which was comparable with the overall ATPase cycle rate, thus assigned to be a rate-determining step. The results suggest that Drosophila myosin VIIA spends the majority of the ATPase cycle in an actomyosin.ADP form, a strong actin binding state. The duty ratio calculated from our kinetic model was approximately 0.9. Therefore, myosin VIIA is classified to be a high duty ratio motor. The present results suggested that myosin VIIA can be a processive motor to serve cargo trafficking in cells once it forms a dimer structure.  相似文献   

17.
DNA topoisomerase II is an essential nuclear enzyme for proliferation of eukaryotic cells and plays important roles in many aspects of DNA processes. In this report, we have demonstrated that the catalytic activity of topoisomerase IIalpha, as measured by decatenation of kinetoplast DNA and by relaxation of negatively supercoiled DNA, was stimulated approximately 2-3-fold by the tumor suppressor p53 protein. In order to determine the mechanism by which p53 activates the enzyme, the effects of p53 on the topoisomerase IIalpha-mediated DNA cleavage/religation equilibrium were assessed using the prototypical topoisomerase II poison, etoposide. p53 had no effect on the ability of the enzyme to make double-stranded DNA break and religate linear DNA, indicating that the stimulation of the enzyme catalytic activity by p53 was not due to alteration in the formation of covalent cleavable complexes formed between topoisomerase IIalpha and DNA. The effects of p53 on the catalytic inhibition of topoisomerase IIalpha were examined using a specific catalytic inhibitor, ICRF-193, which blocks the ATP hydrolysis step of the enzyme catalytic cycle. Clearly manifested in decatenation and relaxation assays, p53 reduced the catalytic inhibition of topoisomerase IIalpha by ICRF-193. ATP hydrolysis assays revealed that the ATPase activity of topoisomerase IIalpha was specifically enhanced by p53. Immunoprecipitation experiments revealed that p53 physically interacts with topoisomerase IIalpha to form molecular complexes without a double-stranded DNA intermediary in vitro. To investigate whether p53 stimulates the catalytic activity of topoisomerase II in vivo, we expressed wild-type and mutant p53 in Saos-2 osteosarcoma cells lacking functional p53. Wild-type, but not mutant, p53 stimulated topoisomerase II activity in nuclear extract from these transfected cells. Our data propose a new role for p53 to modulate the catalytic activity of topoisomerase IIalpha. Taken together, we suggest that the p53-mediated response of the cell cycle to DNA damage may involve activation of topoisomerase IIalpha.  相似文献   

18.
Brino L  Bronner C  Oudet P  Mousli M 《Biochimie》1999,81(10):973-980
DNA gyrase is an essential enzyme that regulates the DNA topology in bacteria. It belongs to the type II DNA topoisomerase family and is responsible for the introduction of negative supercoils into DNA at the expense of hydrolysis of ATP molecules. The aim of the present work was to study the contribution of I10, one of the most important residues responsible for the stabilization of GyrB dimer and involved in the ATP-binding step, in the ATP-hydrolysis reaction and in the DNA supercoiling mechanism. We constructed MBP-tagged GyrB mutants I10G and Delta4-14. Our results demonstrate that both mutations severely affect the DNA-dependent ATPase activity and DNA supercoiling. Mutation of Y5 residue involved in the formation of ATPase catalytic site (Y5G mutant) had only little effect on the DNA-dependent ATPase activity and DNA supercoiling. Interestingly, the DNA-relaxation activity of MBP-GyrB mutants and wild type was completely inhibited by ATP. Binding of ADPNP to MBP-tagged mutants was significantly decreased. ADPNP had no effect on DNA-relaxation activity of MBP-tagged mutants but was able to inhibit MBP-tagged wild type enzyme. Our results demonstrate that GyrB N-terminal arm, and specially I10 residue is essential for ATP binding/hydrolysis efficiency and DNA transfer through DNA gyrase.  相似文献   

19.
Type II DNA topoisomerases catalyze changes in DNA topology and use nucleotide binding and hydrolysis to control conformational changes required for the enzyme reaction. We examined the ATP hydrolysis activity of a bisdioxopiperazine-resistant mutant of human topoisomerase II alpha with phenylalanine substituted for tyrosine at residue 50 in the ATP hydrolysis domain of the enzyme. This substitution reduced the DNA-dependent ATP hydrolysis activity of the mutant protein without affecting the relaxation activity of the enzyme. A similar but stronger effect was seen when the homologous mutation (Tyr28 --> Phe) was introduced in yeast Top2. The ATPase activities of human TOP2alpha(Tyr50 --> Phe) and yeast Top2(Tyr28 --> Phe) were resistant to both bisdioxopiperazines and the ATPase inhibitor sodium orthovanadate. Like bisdioxopiperazines, vanadate traps the enzyme in a salt-stable closed conformation termed the closed clamp, which can be detected in the presence of circular DNA substrates. Consistent with the vanadate-resistant ATPase activity, salt-stable closed clamps were not detected in reactions containing the yeast or human mutant protein, vanadate, and ATP. Similarly, ADP trapped wild-type topoisomerase II as a closed clamp, but could not trap either the human or yeast mutant enzymes. Our results demonstrate that bisdioxopiperazine-resistant mutants exhibit a difference in the stability of the closed clamp formed by the enzyme and that this difference in stability may lead to a loss of DNA-stimulated ATPase. We suggest that the DNA-stimulated ATPase of topoisomerase II is intimately connected with steps that occur while the N-terminal domain of the enzyme is dimerized.  相似文献   

20.
Martinez-Senac MM  Webb MR 《Biochemistry》2005,44(51):16967-16976
RecG is a DNA helicase involved in the repair of damage at a replication fork and catalyzes the reversal of the fork to a point beyond the damage in the template strand. It unwinds duplex DNA in reactions that are coupled to ATP hydrolysis. The kinetic mechanism of duplex DNA unwinding by RecG was analyzed using a quantitative fluorescence assay based on the process of contact quenching between Cy3 and Dabcyl groups attached to synthetic three-way DNA junctions. The data show that the protein moves at a rate of 26 bp s(-1) along the duplex DNA during the unwinding process. RecG ATPase activity during translocation indicates a constant rate of 7.6 s(-1), measured using a fluorescent phosphate sensor, MDCC-PBP. These two rates imply a movement of approximately 3 bp per ATP hydrolyzed. We demonstrate in several trapping experiments that RecG remains attached to DNA after translocation to the end of the arm of the synthetic DNA junction. ATPase activity continues after translocation is complete. Dissociation of RecG from the product DNA occurs only very slowly, suggesting strong interactions between them. The data support the idea that interactions of the duplex template arm with the protein are the major sites of binding and production of translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号