首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Enoyl-acyl carrier protein reductase (FabI) plays a determinant role in completing cycles of elongation in type II fatty acid synthase systems and is an important target for antibacterial drugs. The FabI component of Staphylococcus aureus (saFabI) was identified, and its properties were compared with Escherichia coli FabI (ecFabI). ecFabI and saFabI had similar specific activities, and saFabI expression complemented the E. coli fabI(Ts) mutant, illustrating that the Gram-positive FabI was interchangeable with the Gram-negative FabI enzyme. However, ecFabI was specific for NADH, whereas saFabI exhibited specific and positive cooperative binding of NADPH. Triclosan and hexachlorophene inhibited both ecFabI and saFabI. The triclosan-resistant ecFabI(G93V) protein was also refractory to hexachlorophene inhibition, illustrating that both drugs bind at the FabI active site. Both the introduction of a plasmid expressing the safabI gene or a missense mutation in the chromosomal safabI gene led to triclosan resistance in S. aureus; however, these strains did not exhibit cross-resistance to hexachlorophene. The replacement of the ether linkage in triclosan by a carbon bridge in hexachlorophene prevented the formation of a stable FabI-NAD(P)(+)-drug ternary complex. Thus, the formation of this ternary complex is a key determinant of the antibacterial activity of FabI inhibitors.  相似文献   

2.
Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan.  相似文献   

3.
Rhodobacter sphaeroides contains two enoyl-acyl carrier protein (ACP) reductases, FabI(1) and FabI(2). However, FabI(1) displays most of the cellular enzyme activity. The spontaneous diazaborine-resistant mutation was mapped as substitution of glutamine for proline 155 (P155Q) of FabI(1). The mutation of FabI(1)[P155Q] increased the specificity constants (k(cat)/K(m)) for crotonyl-ACP and NADH by more than 2-fold, while the site-directed mutation G95S (FabI(1)[G95S]), corresponding to the well-known G93 mutation of Escherichia coli FabI, rather decreased the values. Inhibition kinetics of the enzymes revealed that triclosan binds to the enzyme in the presence of NAD(+), while the diazaborine appears to interact with NADH and NAD(+) in the enzyme active site. The apparent inhibition constant K(i)(') of triclosan for FabI(1)[P155Q] and FabI(1)[G95S] at saturating NAD(+) were approximately 80- and 3-fold higher than that for the wild-type enzyme, respectively, implying that the inhibition was remarkably impaired by the P155Q mutation. The similar levels of K(i)(') of diazaborine for the mutant enzymes were also observed with respect to NAD(+). Thus, the novel mutation P155Q appears to disturb the binding of inhibitors to the enzyme without affecting the catalytic efficiency.  相似文献   

4.
Enoyl-[acyl-carrier-protein] (ACP) reductase is a key enzyme in type II fatty-acid synthases that catalyzes the last step in each elongation cycle. The FabI component of Bacillus subtilis (bsFabI) was identified in the genomic data base by homology to the Escherichia coli protein. bsFabI was cloned and purified and exhibited properties similar to those of E. coli FabI, including a marked preference for NADH over NADPH as a cofactor. Overexpression of the B. subtilis fabI gene complemented the temperature-sensitive growth phenotype of an E. coli fabI mutant. Triclosan was a slow-binding inhibitor of bsFabI and formed a stable bsFabI.NAD(+). triclosan ternary complex. Analysis of the B. subtilis genomic data base revealed a second open reading frame (ygaA) that was predicted to encode a protein with a relatively low overall similarity to FabI, but contained the Tyr-Xaa(6)-Lys enoyl-ACP reductase catalytic architecture. The purified YgaA protein catalyzed the NADPH-dependent reduction of trans-2-enoyl thioesters of both N-acetylcysteamine and ACP. YgaA was reversibly inhibited by triclosan, but did not form the stable ternary complex characteristic of the FabI proteins. Expression of YgaA complemented the fabI(ts) defect in E. coli and conferred complete triclosan resistance. Single knockouts of the ygaA or fabI gene in B. subtilis were viable, but double knockouts were not obtained. The fabI knockout was as sensitive as the wild-type strain to triclosan, whereas the ygaA knockout was 250-fold more sensitive to the drug. YgaA was renamed FabL to denote the discovery of a new family of proteins that carry out the enoyl-ACP reductase step in type II fatty-acid synthases.  相似文献   

5.
Steady-state kinetics, equilibrium binding, and primary substrate kinetic isotope effect studies revealed that the reduction of crotonyl-CoA by NADH, catalyzed by Haemophilus influenzae enoyl-ACP reductase (FabI), follows a rapid equilibrium random kinetic mechanism with negative interaction among the substrates. Two biphenyl inhibitors, triclosan and hexachlorophene, were studied in the context of the kinetic mechanism. IC(50) values for triclosan in the presence and absence of NAD(+) were 0.1 +/- 0.02 and 2.4 +/- 0.02 microM, respectively, confirming previous observations that the E-NAD(+) complex binds triclosan more tightly than the free enzyme. Preincubation of the enzyme with triclosan and NADH suggested that the E-NADH complex is the active triclosan binding species as well. These results were reinforced by measurement of binding kinetic transients. Intrinsic protein fluorescence changes induced by binding of 20 microM triclosan to E, E-NADH, E-NAD(+), and E-crotonyl-CoA occur at rates of 0.0124 +/- 0.001, 0.0663 +/- 0.002, 0.412 +/- 0.01, and 0.0069 +/- 0.0001 s(-1), respectively. The rate of binding decreased with increasing crotonyl-CoA concentrations in the E-crotonyl-CoA complex, and the extrapolated rate at zero concentration of crotonyl-CoA corresponded to the rate observed for the binding to the free enzyme. This suggests that triclosan and the acyl substrate share a common binding site. Hexachlorophene inhibition, on the other hand, was NAD(+)- and time-independent; and the calculated IC(50) value was 2.5 +/- 0.4 microM. Steady-state inhibition patterns did not allow the mode of inhibition to be unambiguously determined, but binding kinetics suggested that free enzyme, E-NAD(+), and E-crotonyl-CoA have similar affinity for hexachlorophene, since the k(obs)s were in the same range of 20-24 s(-1). When the E-NADH complex was mixed with hexachlorophene ligand, concentration-independent fluorescence quenching at 480 nm was observed, suggesting at least partial competition between NADH and hexachlorophene for the same binding site. Mutual exclusivity studies, together with the above-discussed results, indicate that triclosan and hexachlorophene bind at different sites of H. influenzae FabI.  相似文献   

6.
Enoyl acyl carrier protein reductase (ENR) is involved in fatty acid biosynthesis. In Escherichia coli this enzyme is the target for the experimental family of antibacterial agents, the diazaborines, and for triclosan, a broad spectrum antimicrobial agent. Biochemical studies have suggested that the mechanism of diazaborine inhibition is dependent on NAD(+) and not NADH, and resistance of Brassica napus ENR to diazaborines is thought to be due to the replacement of a glycine in the active site of the E. coli enzyme by an alanine at position 138 in the plant homologue. We present here an x-ray analysis of crystals of B. napus ENR A138G grown in the presence of either NAD(+) or NADH and the structures of the corresponding ternary complexes with thienodiazaborine obtained either by soaking the drug into the crystals or by co-crystallization of the mutant with NAD(+) and diazaborine. Analysis of the ENR A138G complex with diazaborine and NAD(+) shows that the site of diazaborine binding is remarkably close to that reported for E. coli ENR. However, the structure of the ternary ENR A138G-NAD(+)-diazaborine complex obtained using co-crystallization reveals a previously unobserved conformational change affecting 11 residues that flank the active site and move closer to the nicotinamide moiety making extensive van der Waals contacts with diazaborine. Considerations of the mode of substrate binding suggest that this conformational change may reflect a structure of ENR that is important in catalysis.  相似文献   

7.
The crystal structure of the Escherichia coli enoyl reductase-NAD+-triclosan complex has been determined at 2.5 A resolution. The Ile192-Ser198 loop is either disordered or in an open conformation in the previously reported structures of the enzyme. This loop adopts a closed conformation in our structure, forming van der Waals interactions with the inhibitor and hydrogen bonds with the bound NAD+ cofactor. The opening and closing of this flipping loop is likely an important factor in substrate or ligand recognition. The closed conformation of the loop appears to be a critical feature for the enhanced binding potency of triclosan, and a key component in future structure-based inhibitor design.  相似文献   

8.
T Sanner 《Biochemistry》1975,14(23):5094-5098
The reaction of glutamate dehydrogenase and glutamate (gl) with NAD+ and NADP+ has been studied with stopped-flow techniques. The enzyme was in all experiments present in excess of the coenzyme. The results indicate that the ternary complex (E-NAD(P)H-kg) is present as an intermediate in the formation of the stable complex (E-NAD(P)H-gl). The identification of the complexes is based on their absorption spectra. The binding of the coenzyme to (E-gl) is the rate-limiting step in the formation of (E-NAD(P)H-kg) while the dissociation of alpha-ketoglutarate (kg) from this complex is the rate-limiting step in the formation of (E-NAD(P)H-gl). The Km for glutamate was 20-25 mM in the first reaction and 3 mM in the formation of the stable complex. The Km values were independent of the coenzyme. The reaction rates with NAD+ were approximately 50% greater than those with NADP+. Furthermore, high glutamate concentration inhibited the formation of (E-NADH-kg) while no substrate inhibition was found with NADP+ as coenzyme. ADP enhanced while GTP reduced the rate of (E-NAD(P)H-gl) formation. The rate of formation of (E-NAD(P)H-kg) was inhibited by ADP, while it increased at high glutamate concentration when small amounts of GTP were added. The results show that the higher activity found with NAD+ compared to NADP+ under steady-state assay conditions do not necessarily involve binding of NAD+ to the ADP activating site of the enzyme. Moreover, the substrate inhibition found at high glutamate concentration under steady-state assay condition is not due to the formation of (E-NAD(P)H-gl) as this complex is formed with Km of 3 mM glutamate, and the substrate inhibition is only significant at 20-30 times this concentration.  相似文献   

9.
The human malaria parasite Plasmodium falciparum synthesizes fatty acids using a type II pathway that is absent in humans. The final step in fatty acid elongation is catalyzed by enoyl acyl carrier protein reductase, a validated antimicrobial drug target. Here, we report the cloning and expression of the P. falciparum enoyl acyl carrier protein reductase gene, which encodes a 50-kDa protein (PfENR) predicted to target to the unique parasite apicoplast. Purified PfENR was crystallized, and its structure resolved as a binary complex with NADH, a ternary complex with triclosan and NAD(+), and as ternary complexes bound to the triclosan analogs 1 and 2 with NADH. Novel structural features were identified in the PfENR binding loop region that most closely resembled bacterial homologs; elsewhere the protein was similar to ENR from the plant Brassica napus (root mean square for Calphas, 0.30 A). Triclosan and its analogs 1 and 2 killed multidrug-resistant strains of intra-erythrocytic P. falciparum parasites at sub to low micromolar concentrations in vitro. These data define the structural basis of triclosan binding to PfENR and will facilitate structure-based optimization of PfENR inhibitors.  相似文献   

10.
The antibacterial target enoyl-acyl carrier protein (ACP) reductase is a homotetrameric enzyme that catalyzes the last reductive step of fatty acid biosynthesis. In the present paper, four 2-(2-hydroxyphenoxy)phenol inhibitors, wherein the 4-position substituent varied from H to n-propyl, were studied to determine the contribution of the aliphatic chain to the binding to the wild-type (wt) enoyl-ACP reductase from Escherichia coli (FabI) and a drug-resistant mutant, (F203L)FabI, in which phenylalanine 203 is mutated to leucine. Thermodynamic parameters of ternary complex formation (enzyme-NAD(+)-inhibitor) were determined by isothermal titration calorimetry. The inhibitor affinity to wt FabI and (F203L)FabI increases with increasing aliphatic chain length, although the corresponding affinity for (F203L)FabI is lower, and also, it shows no detectable binding to the 4-H inhibitor. A distinguishing feature of inhibitor binding to either binary enzyme-NAD(+) complex is the apparent negative cooperativity for binding to the tetramer with half-site occupancy. For both enzymes, binding is enthalpy, DeltaH, driven. However, binding DeltaH becomes less favorable with increasing aliphatic chain length. Increases in affinity are found to be exclusively due to favorable changes in solvation entropy. Incremental changes in thermodynamic parameters within the series of inhibitors binding to wt FabI and (F203L)FabI are approximately the same. However, absolute differences between the two enzymes for binding to a given inhibitor are significant, suggesting different binding modes. This finding, coupled with a binding site conformation that is likely to be more rigid in the mutant, appears to result in the drug resistance of (F203L)FabI.  相似文献   

11.
Enoyl-[acyl carrier protein] reductase (ENR) is an essential enzyme in type II fatty-acid synthesis that catalyzes the last step in each elongation cycle. Thus far FabI, FabL and FabK have been reported to carry out the reaction, with FabI being the most characterized. Some bacteria have more than one ENR, and Bacillus cereus has two (FabI and FabL) reported. Here, we have determined the crystal structures of the later in the apo form and in the ternary complex with NADP+ and an indole naphthyridinone inhibitor. The two structures are almost identical, except for the three stretches that are disordered in the apo form. The apo form exists as a homo-dimer in both crystal and solution, while the ternary complex forms a homo-tetramer. The three stretches disordered in the apo structure are important in the cofactor and the inhibitor binding as well as in tetramer formation.  相似文献   

12.
Multimolecular complexes involving the eukaryotic elongation factor 1A (eEF1A) have been suggested to play an important role in the channeling (vectorial transfer) of tRNA during protein synthesis [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. Mol. Biol. 60, 47-78]. Recently we have demonstrated that besides performing its canonical function of forming a ternary complex with GTP and aminoacyl-tRNA, the mammalian eEF1A can produce a noncanonical ternary complex with GDP and uncharged tRNA [Petrushenko, Z.M., Negrutskii, B.S., Ladokhin, A.S., Budkevich, T.V., Shalak, V.F. & El'skaya, A.V. (1997) FEBS Lett. 407, 13-17]. The [eEF1A.GDP.tRNA] complex has been hypothesized to interact with aminoacyl-tRNA synthetase (ARS) resulting in a quaternary complex where uncharged tRNA is transferred to the enzyme for aminoacylation. Here we present the data on association of the [eEF1A.GDP.tRNA] complex with phenylalanyl-tRNA synthetase (PheRS), e.g. the formation of the above quaternary complex detected by the gel-retardation and surface plasmon resonance techniques. To estimate the stability of the novel ternary and quaternary complexes of eEF1A the fluorescence method and BIAcore analysis were used. The dissociation constants for the [eEF1A.GDP.tRNA] and [eEF1A.GDP.tRNAPhe.PheRS] complexes were found to be 20 nm and 9 nm, respectively. We also revealed a direct interaction of PheRS with eEF1A in the absence of tRNAPhe (Kd = 21 nm). However, the addition of tRNAPhe accelerated eEF1A.GDP binding to the enzyme. A possible role of these stable novel ternary and quaternary complexes of eEF1A.GDP with tRNA and ARS in the channeled elongation cycle is discussed.  相似文献   

13.
Substitution of Co(II) for the catalytic site Zn(II) of horse liver alcohol dehydrogenase (LADH) yields an active enzyme derivative, CoIIE, with characteristic Co(II) charge-transfer and d-d electronic transitions that are sensitive to the events which take place during catalysis [Koerber, S. C., MacGibbon, A. K. H., Dietrich, H., Zeppezauer, M., & Dunn, M. F. (1983) Biochemistry 22, 3424-3431]. In this study, UV-visible spectroscopy and rapid-scanning stopped-flow (RSSF) kinetic methods are used to detect and identify intermediates in the LADH catalytic mechanism. In the presence of the inhibitor isobutyramide, the pre-steady-state phase of alcohol (RCH2OH) oxidation at pH above 7 is characterized by the formation and decay of an intermediate with lambda max = 570, 640, and 672 nm for both aromatic and aliphatic alcohols (benzyl alcohol, p-nitrobenzyl alcohol, anisyl alcohol, ethanol, and methanol). By comparison with the spectrum of the stable ternary complex formed with oxidized nicotinamide adenine dinucleotide (NAD+) and 2,2',2'-trifluoroethoxide ion (TFE-), CoIIE(NAD+, TFE-), the intermediate which forms is proposed to be the alkoxide ion (RCH2O-) complex, CoIIE(NAD+, RCH2O-). The timing of reduced nicotinamide adenine dinucleotide (NADH) formation indicates that intermediate decay is limited by the interconversion of ternary complexes, i.e., CoIIE(NAD+, RCH2O-) in equilibrium CoIIE(NADH, RCHO). From competition experiments, we infer that, at pH values below 5, NAD+ and alcohol form a CoIIE(NAD+, RCH2OH) ternary complex. RSSF studies carried out as a function of pH indicate that the apparent pKa values for the ionization of alcohol within the ternary complex, i.e., CoIIE(NAD+, RCH2OH) in equilibrium CoIIE(NAD+, RCH2O-) + H+, fall in the range 5-7.5. Using pyrazole as the dead-end inhibitor, we find that the single-turnover time courses for the reduction of benzaldehyde, p-nitrobenzaldehyde, anisaldehyde, and acetaldehyde at pH above 7 all show evidence for the formation and decay of an intermediate. Via spectral comparisons with CoIIE-(NAD+, TFE-) and with the intermediate formed during alcohol oxidation, we identify the intermediate as the same CoIIE(NAD+, RCH2O-) ternary complex detected during alcohol oxidation.  相似文献   

14.
M R Eftink 《Biochemistry》1986,25(21):6620-6624
The fluorescence of alcohol dehydrogenase is quenched by the acid dissociation of some group on the protein having an apparent pKa of 9.6 at 25 degrees C. The pKa of this alkaline quenching transition is unchanged by the binding of trifluoroethanol or pyrazole to the enzyme or by the selective removal of the active site of Zn2+ ion. This indicates that the ionization of a zinc-bound water molecule is not responsible for the quenching. The binding of NAD+ to the enzyme causes a drop in protein fluorescence and an apparent shift in the alkaline quenching transition to lower pH. In the ternary complex formed with NAD+ and trifluoroethanol the alkaline transition is difficult to discern between pH 6 and pH 11. In the NAD+-pyrazole ternary complex, however, a small but noticeable fluorescence transition is observed with a pKa(app) approximately 9.5. We propose that the alkaline transition centered at pH 9.6 is not shifted to lower pH upon binding NAD+. Instead, the amplitude of the alkaline quenching effect is decreased to the point that it is difficult to detect when NAD+ is bound. We present a model that describes the dependence of the fluorescence of the protein on pH and NAD+ concentration in terms of two independently operating, dynamic quenching mechanisms. Our data and model cast serious doubt on the identification, made previously in the literature, between the alkaline quenching pKa and the pKa of the group whose ionization is coupled to NAD+ binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
C R Cremo  G T Long  J C Grammer 《Biochemistry》1990,29(34):7982-7990
The heavy chain of myosin's subfragment 1 (S1) was cleaved at two distinct sites (termed V1 and V2) after irradiation with UV light in the presence of millimolar concentrations of vanadate and in the absence of nucleotides or divalent metals. The V1 site cleavage appeared to be identical with the previously described active site cleavage at serine-180, which is effected by irradiation of a photomodified form of the S1-MgADP-Vi complex [Cremo, C. R., Grammer, J. C., & Yount, R. G. (1989) J. Biol. Chem. 264, 6608-6011]. The V2 site was cleaved specifically, without cleavage at the V1 site, first by formation of the light-stable S1-Co2+ADP-Vi complex at the active site [Grammer, J. C., Cremo, C. R., & Yount, R. G. (1988) Biochemistry 27, 8408-8415] and then by irradiation in the presence of millimolar vanadate. By gel electrophoresis, the V2 site was localized to a region about 20 kDa from the COOH terminus of the S1 heavy chain. From the results of tryptic digestion experiments, the COOH-terminal V2 cleavage peptide appeared to contain lysine-636 in the linker region between the 50- and 20-kDa tryptic peptides of the heavy chain. This site appeared to be the same site cleaved by irradiation of S1 (not complexed with Co2+ADP-Vi) in the presence of millimolar vanadate as previously described [Mocz, G. (1989) Eur. J. Biochem. 179, 373-378]. Cleavage at the V2 site was inhibited by Co2+ but was not significantly affected by the presence of nucleotides or Mg2+ ions. Tris buffer significantly inhibited V2 cleavage. From the results of UV-visible absorption, 51V NMR, and frozen-solution EPR spectral experiments, it was concluded that irradiation with UV light reduced vanadate +5 to the +4 oxidation state, which was then protected from rapid reoxidation by O2 by complexation with the Tris buffer. The relatively stable reduced form or forms of vanadium were not competent to cleave S1 at either the V1 or the V2 site. 51V NMR titration experiments indicated that a tetrameric species of vanadium preferentially bound to S1 and to the S1-MgADP-Vi complex, whereas no binding of either the monomeric or dimeric species could be detected. These results suggest that the vanadate tetramer was responsible for the photocleavage of S1 which occurred at both the V1 and V2 sites in the absence of nucleotides or divalent metals.  相似文献   

16.
The crystal structure of the phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus was solved in complex with its cofactor, NAD, and its physiological substrate, D-glyceraldehyde 3-phosphate (D-G3P). To isolate a stable ternary complex, the nucleophilic residue of the active site, Cys(149), was substituted with alanine or serine. The C149A and C149S GAPDH ternary complexes were obtained by soaking the crystals of the corresponding binary complexes (enzyme.NAD) in a solution containing G3P. The structures of the two binary and the two ternary complexes are presented. The D-G3P adopts the same conformation in the two ternary complexes. It is bound in a non-covalent way, in the free aldehyde form, its C-3 phosphate group being positioned in the P(s) site and not in the P(i) site. Its C-1 carbonyl oxygen points toward the essential His(176), which supports the role proposed for this residue along the two steps of the catalytic pathway. Arguments are provided that the structures reported here are representative of a productive enzyme.NAD.D-G3P complex in the ground state (Michaelis complex).  相似文献   

17.
M R Eftink  K Bystr?m 《Biochemistry》1986,25(21):6624-6630
The association of the coenzyme NAD+ to liver alcohol dehydrogenase (LADH) is known to be pH dependent, with the binding being linked to the shift in the pK of some group on the protein from a value of 9-10, in the free enzyme, to 7.5-8 in the LADH-NAD+ binary complex. We have further characterized the nature of this linkage between NAD+ binding and proton dissociation by studying the pH dependence (pH range 6-10) of the proton release, delta n, and enthalpy change, delta Ho(app), for formation of both binary (LADH-NAD+) and ternary (LADH-NAD+-I, where I is pyrazole or trifluoroethanol) complexes. The pH dependence of both delta n and delta Ho(app) is found to be consistent with linkage to a single acid dissociating group, whose pK is perturbed from 9.5 to 8.0 upon NAD+ binding and is further perturbed to approximately 6.0 upon ternary complex formation. The apparent enthalpy change for NAD+ binding is endothermic between pH 7 and pH 10, with a maximum at pH 8.5-9.0. The pH dependence of the delta Ho(app) for both binary and ternary complex formation is consistent with a heat of protonation of -7.5 kcal/mol for the coupled acid dissociating group. The intrinsic enthalpy changes for NAD+ binding and NAD+ plus pyrazole binding to LADH are determined to be approximately 0 and -11.0 kcal/mol, respectively. Enthalpy change data are also presented for the binding of the NAD+ analogues adenosine 5'-diphosphoribose and 3-acetylpyridine adenine dinucleotide.  相似文献   

18.
The cDNA for the alpha-isoenzyme from rhesus monkey (Macaca mulatta) liver was cloned and expressed in yeast. The alpha-isoenzymes of human and monkey liver alcohol dehydrogenase differ from the other human and horse liver enzymes in having Met57, Ala93, and Val116 instead of Leu57, Phe93, and Leu116 in the substrate binding pocket and Gly47 instead of Arg47 near the pyrophosphate moiety of the coenzyme. The effects of these differences on the kinetic mechanism, substrate specificity, and coenzyme binding were studied with the purified, recombinant monkey alpha-isoenzyme (MmADH alpha) and mutated enzymes with Gly47 substituted with His or Arg. The mechanism appears to be random for the binding of NAD+ and ethanol and ordered for NADH and acetaldehyde, with formation of a dead-end enzyme-NADH-ethanol complex. MmADH alpha reacts 130-fold slower (V/K) with ethanol and 3-25-fold slower with 2-methyl alcohols but 20-fold faster with cyclohexanol, as compared with horse (Equus caballus) liver EE isoenzyme (EqADH). MmADH alpha is stereoselective for the R isomer of 2-butanol, whereas EqADH favors the S isomer. Both enzymes have comparable reactivity with larger primary alcohols. MmADH alpha is more reactive with secondary alcohols and has highest activity with cyclohexanol. However, it does not react with steroids such as 5 beta-androstane-17 beta-ol-3-one. Molecular modeling suggests that the differences between MmADH alpha and EqADH are a result of the substitution of Ala for Phe93 and Thr for Ser48. MmADH alpha binds NAD+ most rapidly when a group with a pK of 7.4 is unprotonated, implicating His51 in this reaction. The G47R substitution decreased the dissociation constants for NAD+ and NADH and turnover numbers only about 2-fold, whereas the G47H substitution increased dissociation constants 7-14-fold and turnover numbers 4-fold. A basic residue at position 47 is not crucial for activity, as multiple interactions determine coenzyme affinity.  相似文献   

19.
Kovaleva EG  Plapp BV 《Biochemistry》2005,44(38):12797-12808
Binding of NAD+ to wild-type horse liver alcohol dehydrogenase is strongly pH-dependent and is limited by a unimolecular step, which may be related to a conformational change of the enzyme-NAD+ complex. Deprotonation during binding of NAD+ and inhibitors that trap the enzyme-NAD+ complex was examined by transient kinetics with pH indicators, and formation of complexes was monitored by absorbance and protein fluorescence. Reactions with pyrazole and trifluoroethanol had biphasic proton release, whereas reaction with caprate showed proton release followed by proton uptake. Proton release (200-550 s(-1)) is a common step that precedes binding of all inhibitors. At all pH values studied, the rate constants for proton release or uptake matched those for formation of ternary complexes, and the most significant quenching of protein fluorescence (or perturbation of adenine absorbance at 280 nm) was observed for enzyme species involved in deprotonation steps. Kinetic simulations of the combined transient data for the multiple signals indicate that all inhibitors bind faster and tighter to the unprotonated enzyme-NAD+ complex, which has a pK of about 7.3. The results suggest that rate-limiting deprotonation of the enzyme-NAD+ complex is coupled to the conformational change and controls the formation of ternary complexes.  相似文献   

20.
The formation of the ternary complex of lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from pig heart and skeletal muscle with the adduct of pyruvate to NAD", spin-labeled at N6 was studied by ultraviolet spectroscopy and ESR techniques. According to ultraviolet measurements we found identical binding characteristics for the natural coenzyme and its spin-labeled analog. The rate by which the ESR signal of free spin-labeled NAD+ decreased upon addition of pyruvate to the binary complexes was substantially different in the two isozymes. With the heart type an initial drop followed by a further linear decrease, zero order in the enzyme and coenzyme concentration was observed. In case of the skeletal muscle isozyme no immediate reaction and a first order process occurred. The initial reaction can be attributed to a non-covalent enzyme/spin-labeled NAD+/pyruvate complex with a dissociation constant for pyruvate of 11 +/- 1 mM, thus explaining the well-known substrate inhibition in the heart isozyme above 2 mM pyruvate. The further reaction is then determined by the buffer dependent enolization of pyruvate. In the muscle isozyme formation of the covalent adduct is not assisted by prior binding of pyruvate in a non-covalent ternary complex and therefore the rate depends on the binary complex concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号