首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1996,172(2):303-308
Using the polymerase chain reaction, DNA encoding cytosolic malate dehydrogenase (cMDH) has been cloned from a pig heart cDNA library. Large amounts of the enzyme (30 mg per litre of original culture) have been produced in Escherichia coli using an inducible expression vector (pKK223-3) in which the 5′-non-coding region of the gene was replaced with the tac promoter. The complete nucleotide sequence of the DNA is reported for the first time. The recombinant cMDH purified was shown to be identical to the native enzyme according to: chromatographic behaviour, isoelectric point, N-terminal amino acid sequence, and physicochemical and catalytic properties.  相似文献   

2.
S K Goda  N P Minton  N P Botting  D Gani 《Biochemistry》1992,31(44):10747-10756
The gene encoding methylaspartase (EC 4.3.1.2) from Clostridium tetranomorphum has been cloned, sequenced, and expressed in Escherichia coli. The open reading frame (ORF) codes for a polypeptide of 413 amino acid residues (M(r) 45,539) of which seven are cysteine residues. The size of the ORF indicates that methylaspartase is a homodimer rather than an (AB)2 tetramer. The deduced primary structure of the protein shows no homology to enzymes that catalyze similar reactions or, indeed, any convincing homology with any other characterized protein. The recombinant protein is identical to the enzyme isolated directly from C. tetanomorphum as determined by several criteria. The enzyme is obtained in a highly active form (approximately 70% of the activity of the natural enzyme) and migrates as a single band (M(r) 49,000) in SDS-polyacrylamide gels. The kinetic parameters for the deamination of (2S,3S)-3-methylaspartic acid by the natural and recombinant proteins are very similar, and the proteins display identical potassium ion-dependent primary deuterium isotope effects for V and V/K when (2S,3S)-3-methylaspartic acid is employed as the substrate. In accord with the activity of the natural enzyme, the recombinant protein is able to catalyze the slow formation of (2S,3R)-3-methylaspartic acid, the L-erythro-epimer of the natural substrate, from mesaconic acid and ammonia. Earlier work in which the cysteine residues in the protein were labeled with N-ethylmaleimide had indicated that there were eight cysteine residues per protein monomer. One cysteine residue was protected by substrate. Here evidence is forwarded to suggest that the residue that was protected by the substrate is not a cysteine residue but the translation product of a serine codon. Kinetic data indicate that this serine residue may be modified in the active enzyme. The implications of these findings on the mechanism of catalysis are discussed within the context of a few emerging mode of action for methylaspartate ammonia-lyase.  相似文献   

3.
Summary Several hundred bacterial isolates were screened for bacteriolytic activity by growing them on agar medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells as the substrate. A Bacillus sp. producing the largest lytic zone was selected. A genomic bank of this selected bacterium was constructed in the multi-functional vector pTZ18R, with partial SauIIIA DNA fragments inserted at the SalI restriction site. Screening of 800 colonies of this bank for cell lysis gave 5 recombinants exhibiting lytic activity, as detected by analysis of extracts of sonicated Escherichia coli cells on denaturing polyacrylamide gels containing autoclaved, lyophilized M. lysodeikticus cells as the substrate. One clone (pBH2500), expressed inE. coli strain NM522, was found to code for a lytic enzyme corresponding, in molecular weight, to the 27 kDa Bacillus sp hydrolase. This clone with an insertion of 2.5 kb was then subcloned as a 929 bp EcoRI-SauIIIA fragment in pTZ18R (pBH929) and showed higher cell lytic activity. A unique open reading frame for a protein of 251 amino acids, followed by a putative terminator sequence, was found after a consensus ribosome binding site. A putative leader sequence was identified in the first 37 amino acids. One truncated subclone (pBH703), corresponding to 196 out of 251 residues from the protein N-terminal end, still possessed lytic activity.  相似文献   

4.
The first step in the biosynthesis of melatonin in the pineal gland is the hydroxylation of tryptophan to 5-hydroxytryptophan. A cDNA of human tryptophan hydroxylase (TPH) was cloned from a library of human pineal gland and expressed in Escherichia coli. This cDNA sequence is identical to the cDNA sequence published from the human carcinoid tissue [1]. This human pineal hydroxylase gene encodes a protein of 444 amino acids and a molecular mass of 51 kDa estimated for the purified enzyme. Tryptophan hydroxylase from human brainstem exhibits high sequence homology (93% identity) with the human pineal hydroxylase. The recombinant tryptophan hydroxylase exists in solution as tetramers. The expressed human pineal tryptophan hydroxylase has a specific activity of 600 nmol/min/mg when measured in the presence of tetrahydrobiopterin and L-tryptophan. The enzyme catalyzes the hydroxylation of tryptophan and phenylalanine at comparable rates. Phosphorylation of the hydroxylase by protein kinase A or calmodulin-dependent kinase II results in the incorporation of 1 mol of phosphate/mol of subunit, but this degree of phosphorylation leads to only a modest (30%) increase in BH(4)-dependent activity when assayed in the presence of 14-3-3. Rapid scanning ultraviolet spectroscopy has revealed the formation of the transient intermediate compound, 4alpha-hydroxytetrahydrobiopterin, during the hydroxylation of either tryptophan or phenylalanine catalyzed by the recombinant pineal TPH.  相似文献   

5.
Rotavirus VP8* subunit is the minor trypsin cleavage product of the spike protein VP4, which is the major determinant of the viral infectivity and neutralization. To study the structure-function relationship of this fragment and to obtain type-specific reagents, substantial amounts of this protein are needed. Thus, full-length VP8* cDNA, including the entire trypsin cleavage-encoding region in gene 4, was synthesized and amplified by RT-PCR from total RNA purified from bovine rotavirus strain C486 propagated in MA104 cell culture. The extended VP8* cDNA (VP8ext) was cloned into the pGEM-T Easy plasmid and subcloned into the Escherichia coli expression plasmid pET28a(+). The correspondent 30 kDa protein was overexpressed in E. coli BL21(DE3)pLysS cells under the control of the T7 promoter. The identity and the antigenicity of VP8ext were confirmed on Western blots using anti-His and anti-rotavirus antibodies. Immobilized Ni-ion affinity chromatography was used to purify the expressed protein resulting in a yield of 4 mg of VP8ext per liter of induced E. coli culture. Our results indicate that VP8ext maintained its native antigenicity and specificity, providing a good source of antigen for the production of P type-specific immune reagents. Detailed structural analysis of pure recombinant VP8 subunit should allow a better understanding of its role in cell attachment and rotavirus tropism. Application of similar procedure to distinct rotavirus P serotypes should provide valuable P serotype-specific immune reagents for rotavirus diagnostics and epidemiologic surveys.  相似文献   

6.
A simple purification method for pancreatic deoxyribonuclease I (DNase I) [EC 3.1.4.3] was developed by utilizing the technique of isoelectric focusing. The active protein was resolved in to at least four forms with different isoelectric points; the major components a, b, and c had isoelectric points at pH 5.2, 4.9, and 4.8, respectively, and that of the minor component d was at 4.7. The four components (a, b, c, and d) exhibited peaks similar to those observed by Salnikow et al. after phosphocellulose chromatography (A, B, C, and D). The four components were all free from RNase and protease activities and were very stable at 0-2 degrees C for at least four weeks. Further, each of the four peaks exhibited a single protein band after polyacrylamide electrophoresis. DNase I-a antibody was prepared; it was very specific for DNase I and precipitated with the other components (b, c, and d). The mode of endonucleolytic action of pancreatic DNase I-a purified from Worthington DP grade DNase I was investigated. The sedimentation patterns in neutral sucrose gradients of digest of circular duplex DNA in an early stage of hydrolysis suggested that DNase I produces single strand scissions in the initial attack in the presence of divalent metal ions.  相似文献   

7.
A full-length cDNA clone coding for porcine pancreatic preprocarboxypeptidase A1 (prePCPA1) was isolated from a cDNA library. The open reading frame (ORF) of the nucleotide sequence was 1260 nt in length and encoded a protein of 419 amino acids (aa). The cDNA included a short signal peptide of 16 aa and a 94 aa-long activation segment. The calculated molecular mass of the mature proenzyme was 45561 Da, in accordance with that of the purified porcine pancreatic PCPA1. The deduced aa sequence of the corresponding enzyme differed from that predicted by the three-dimensional structure by 40 aa, and showed 85% identity and 55% identity to that of procarboxypeptidases A1 and A2, respectively. Moreover the sequence was identical to that of several independent cDNA clones, suggesting that it is the major transcribed gene. No evidence for a second variant was observed in the cDNA library and PCPA2 is apparently absent from the porcine pancreas. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast triose phosphate isomerase promoter. The signal peptide of the PCPA protein efficiently directed its secretion into the culture medium (1.5 mg.L-1) as a protein of the predicted size. The recombinant proenzyme was analyzed by immunological and enzymological methods. Its activation behavior was comparable with that of the native form and led to a 35-kDa active enzyme.  相似文献   

8.
利用RT-PCR技术扩增了编码烟实夜蛾 Helicoverpa assulta 触角化学感受蛋白(chemosensory protein)的全长cDNA。克隆和测序结果表明,烟实夜蛾化学感受蛋白基因核苷酸序列全长384 bp(GenBank序列号: DQ285667),编码127个氨基酸残基,预测N-末端包含16个氨基酸组成的信号肽序列,因此估测其成熟蛋白分子量为12.97 kD,等电点为5.32。将该基因重组到表达载体pGEX-4T2中,并转入原核细胞中进行表达。SDS-PAGE和Western印迹分析表明,经IPTG诱导后,烟实夜蛾化学感受蛋白基因能在大肠杆菌BL21中表达,电泳检测到一条约39 kD的外源蛋白,与预测的融合蛋白分子量大小相符。  相似文献   

9.
We have cloned a DNA that is complementary to the messenger RNA that encodes porcine pancreatic elastase 1 from pancreas using rat pancreatic elastase 1 cDNA as a probe. This complementary DNA contains the entire protein coding region of 798 nucleotides which encodes an elastase of 266 amino acids, and 22 and 136 nucleotides of the 5' and 3'-untranslated sequences. When this deduced amino acid sequence was compared with known amino acid sequences, a carboxy-terminal 240 amino acids long peptide was found to be identical with a mature form of porcine pancreatic elastase 1, except for two amino acids. The porcine enzyme contains the same number of amino acid residues as the rat enzyme, and their amino acid sequences are 85% homologous. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 240 amino acids including a leader and activation peptide of 26 amino acids. We expressed the cloned porcine pancreatic elastase 1 cDNA in E. coli as a lac-fused protein. The resulting fused protein showed enzymatic activity and immunoreactivity toward anti-elastase serum.  相似文献   

10.
《Gene》1997,186(2):161-165
To identify the bovine mannan-binding protein (MBP), a search for the cDNA homologue of human MBP was carried out. cDNA clones encoding bovine MBP were isolated from a bovine liver cDNA library using a cDNA fragment encoding a short collagen region, neck domain and carbohydrate recognition domain of human MBP. The cDNA carried an insert of 747 bp encoding a protein of 249 amino acid (aa) residues with a signal peptide of 19 aa. The mannan-binding protein fraction of bovine serum that eluted with 100 mM mannose from a mannan-Sepharose column was analyzed under reducing conditions by SDS-PAGE. The major band of 33 kDa obtained reacted with anti-human MBP rabbit serum. The partial aa sequence of the purified 33-kDa protein was identical to the aa sequence deduced from the obtained cDNA. Results of the passive hemolysis experiment using sheep erythrocytes coated with yeast mannan suggest that this MBP has the ability to activate complement. Northern blot analysis showed a 1.8-kb mRNA that was expressed only in the liver. Based on results of genomic analysis, this bovine MBP is likely to be a homologue of human MBP and to also have homology to rat and mouse MBP-C which are localized in liver cells rather than to rat and mouse MBP-A found in serum. Alignments of bovine collectins show that bovine MBP cannot be included among the other bovine collectins, such as bovine SP-D, conglutinin and CL-43. Finally, these genomic and biological analyses indicate that the cDNA obtained here encoded a bovine serum MBP.  相似文献   

11.
G Dong  C Vieille    J G Zeikus 《Applied microbiology》1997,63(9):3577-3584
The gene encoding the Pyrococcus furiosus hyperthermophilic amylopullulanase (APU) was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a single 827-residue polypeptide with a 26-residue signal peptide. The protein sequence had very low homology (17 to 21% identity) with other APUs and enzymes of the alpha-amylase family. In particular, none of the consensus regions present in the alpha-amylase family could be identified. P. furiosus APU showed similarity to three proteins, including the P. furiosus intracellular alpha-amylase and Dictyoglomus thermophilum alpha-amylase A. The mature protein had a molecular weight of 89,000. The recombinant P. furiosus APU remained folded after denaturation at temperatures of < or = 70 degrees C and showed an apparent molecular weight of 50,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Denaturating temperatures of above 100 degrees C were required for complete unfolding. The enzyme was extremely thermostable, with an optimal activity at 105 degrees C and pH 5.5. Ca2+ increased the enzyme activity, thermostability, and substrate affinity. The enzyme was highly resistant to chemical denaturing reagents, and its activity increased up to twofold in the presence of surfactants.  相似文献   

12.
We present the cloning and sequencing of the ptsI gene, encoding enzyme I (EI) of the phosphoenolpyruvate (PEP): sugar phosphotransferase (PTS) transport system from Streptococcus salivarius. The ptsI gene corresponds to an open reading frame of 1731 nucleotides, which translates into a putative 577-amino acid (aa) protein with a M(r) of 62,948 and a pI of 4.49. The EI was produced in Escherichia coli under the control of its own promoter located immediately upstream of ptsI, a situation never previously reported for any other gene coding for an EI. The deduced aa sequence of the S. salivarius EI shows a high degree of similarity with the E. coli EI and the EI moiety of the multiphosphoryl transfer protein from Rhodobacter capsulatus. The S. salivarius EI also shares a highly conserved aa cluster with a non-PTS protein, the maize pyruvate:orthophosphate dikinase. The conserved cluster is located in a domain which is hypothesized to be the PEP-binding site.  相似文献   

13.
Ornithine decarboxylase from the African trypanosome is an important target for antitrypanosomal chemotherapy. Despite this, the enzyme had not been previously purified or extensively characterized as it is a very low level protein. In this paper we describe the purification of Trypanosoma brucei brucei ornithine decarboxylase from bloodstream form trypomastigotes by 107,000-fold to a specific activity of 2.7 x 10(6) nmol CO2/h/mg of protein in the parasite. T. brucei ornithine decarboxylase had a native molecular weight of 90,000 and a subunit molecular weight of 45,000. The isoelectric point of the protein was 5.0. The Km for ornithine was 280 microM and the Ki for the irreversible inhibitor alpha-difluoromethylornithine (DFMO) was 220 microM with a half-time of inactivation at saturating DFMO concentration of 2.7 min. T. brucei ornithine decarboxylase appears similar to mouse ornithine decarboxylase, further supporting our previous suggestion that the selective toxicity of DFMO to the parasite is not due to catalytic differences between the two proteins. Although a small quantity of T. brucei ornithine decarboxylase was purified from T. brucei, extensive structural and kinetic studies will require a more ample source of the enzyme. We therefore expressed our previously cloned T. brucei ornithine decarboxylase gene in Escherichia coli using a vector that contains an inducible lambda promoter. T. brucei ornithine decarboxylase activity was induced in E. coli to levels that were 50 to 200 fold of that present in the long-slender bloodstream form of T. brucei. Ornithine decarboxylase activity in the crude E. coli lysate was 1500-6000 nmol of CO2/h/mg of protein and represented 0.05-0.2% of the total cell protein. The recombinant T. brucei ornithine decarboxylase was purified to apparent homogeneity from the transformed E. coli. The purified recombinant enzyme had kinetic and physical properties essentially identical to those of the native enzyme.  相似文献   

14.
We have cloned a DNA that is complementary to the messenger RNA that encodes human pancreatic elastase 2 from a human pancreatic cDNA library using a cloned cDNA for rat pancreatic elastase 2 messenger RNA. This complementary DNA contains the entire protein coding region of 807 nucleotides which encodes preproelastase of 269 amino acids, and 4 and 82 nucleotides of the 5'- and 3'-untranslated sequences, respectively. When this deduced amino acid sequence was compared with known amino acid sequences it showed 82% homology with rat pancreatic elastase 2. This deduced sequence also contains a 16-amino-acid peptide identical with the N-terminal sequence determined for native human pancreatic proelastase 2. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 241 amino acids including 16 and 12 amino acids for a signal peptide and an activation peptide, respectively. Moreover, the predicted key amino acid residues involved in determining the substrate specificity of mammalian pancreatic elastase 2 are retained in the human enzyme. Cloned human pancreatic elastase 2 cDNA was expressed in E. coli as a mature and pro-form protein. Both resulting proteins showed immunoreactivity toward anti-elastase serum and enzymatic activity. We have also cloned and sequenced a porcine pancreatic elastase 2 cDNA.  相似文献   

15.
The Escherichia coli cca gene which encodes the enzyme tRNA nucleotidyltransferase has been cloned by taking advantage of its proximity to the previously cloned dnaG locus. A series of recombinant bacteriophages, spanning the chromosomal region between the dnaG and cca genes at 66 min on the E. coli linkage map, were isolated from a lambda Charon 28 partial Sau3A E. coli DNA library using recombinant plasmids containing regions between dnaG and cca as probes. Two of the recombinant phage isolates, lambda c1 and lambda c4, contained the cca gene. A BamHI fragment from lambda c1 was subcloned into pBR328, and cells containing this recombinant plasmid, pRH9, expressed tRNA nucleotidyltransferase activity at about 10-fold higher level than the wild type control. The cca gene was further localized to a 1.4-kilobase stretch of DNA by Bal31 deletion analysis. The nucleotide sequence of the cca gene was determined by the dideoxy method, and revealed an open reading frame extending for a total of 412 codons from an initiator GTG codon that would encode a protein of about 47,000 daltons. Southern analysis using genomic blots demonstrated that the cca gene is present as a single copy on the E. coli chromosome and that there is no homology on the DNA level between the E. coli cca gene, and the corresponding gene in the Bacillus subtilis, Saccharomyces cerevisiae, Petunia hybrida, or Homo sapiens genomes. Homology was found only with DNA from the closely related species, Salmonella typhimurium. These studies have also allowed exact placement of the cca gene on the E. coli genetic map, and have shown that it is transcribed in a clockwise direction.  相似文献   

16.
In a recent study (Cruse, I., and Maines, M.D. (1988) J. Biol. Chem. 263, 3348-3353), we reported the isolation of a small cDNA fragment encoding a portion of heme oxygenase-2 through immunological screening of a rat testis cDNA library in lambda gt11. We have now used this 274-base pair (bp) cDNA fragment as a hybridization probe for rescreening of the same library, and have thereby recovered a number of additional positive isolates. Of these, three candidates of approximately 900, 1100, and 1300 bp, respectively, were subsequently subcloned and sequenced. Although differing in length, the sequences of these clones were found to be otherwise identical. Moreover, the length of isolate 18B, 1284 bp, corresponded well with that of the single mRNA species (approximately 1300-1350 nucleotides) detected through Northern blot hybridization analysis of rat testis total and poly(A)+RNA. This full- or near full-length cDNA encodes a 315-amino acid protein with a molecular weight of 35,757, in good agreement with the 36,000 estimated molecular weight of heme oxygenase-2. When expressed in Escherichia coli, cDNA encodes a protein that cross-reacts with heme oxygenase-2 antiserum (as assayed by Western immunoblotting) and yields high levels of heme oxygenase activity in bacterial soluble cell extracts. Finally, computer analysis of the heme oxygenase-2 cDNA sequence indicates that the predicted amino acid sequence and hydropathy profile of the heme oxygenase-2 protein exhibit similarity with heme oxygenase-1.  相似文献   

17.
NAD(+)-dependent malic enzyme (NAD-ME) gene from Escherichia coli K12 was inserted into an expression vector pET24b(+) and transformed into E. coli BL21 (DE3). Recombinant NAD-ME was expressed upon IPTG induction, purified with affinity chromatography, and biochemically characterized. The results showed that recombinant NAD-ME could be produced mainly in a soluble form. The monomeric molecular weight of recombinant NAD-ME was about 65 kDa, whereas monomer, homotetramer, and homooctamer were formed in solution as revealed by nondenaturing polyacrylamide gel electrophoresis analysis. Finally, the K(m) values of NAD-ME for L-malate and NAD were determined as 0.420+/-0.174 and 0.097+/-0.038 mM, respectively, at pH 7.2. By using this over-expression and purification system, recombinant E. coli K12 NAD-ME can now be obtained in large quantity necessary for further biochemical characterization and applications.  相似文献   

18.
Abstract Using a genomic subtraction technique, we cloned a DNA sequence that is present in wild-type Escherichia coli strain CSH4 but is missing in a presumptive proline dehydrogenase deletion mutant RM2. Experimental evidence indicated that the cloned fragment codes for proline dehydrogenase (EC 1.5.99.8) since RM2 cells transformed with a plasmid containing this sequence was able to survive on minimal medium supplemented with proline as the sole nitrogen and carbon sources. The cloned DNA fragment has an open reading frame of 3942 bp and encodes a protein of 1313 amino acids with a calculated M r of 143 808. The deduced amino acid sequence of the E. colli proline dehydrogenase has an 84.9% homology to the previously reported Salmonella typhimurium putA gene but it is 111 amino acids longer at the C-terminal than the latter.  相似文献   

19.
As in many bacterial species, the first enzymatic reaction of the aspartate-family pathway in plants is mediated by several isozymes of aspartate kinase (AK) that are subject to feedback inhibition by the end-product amino acids lysine or threonine. So far, only cDNAs and genes encoding threonine-sensitive AKs have been cloned from plants. These were all shown to encode polypeptides containing two linked activities, namely AK and homoserine dehydrogenase (HSD), similar to the Escherichia coli thrA gene encoding a threonine-sensitive bifunctional AK/HSD isozyme. In the present report, we describe the cloning of a new Arabidopsis thaliana cDNA that is relatively highly homologous to the E. coli lysC gene encoding the lysine-sensitive AK isozyme. Moreover, similar to the bacterial lysine-sensitive AK, the polypeptide encoded by the present cDNA is monofunctional and does not contain an HSD domain. These observations imply that our cloned cDNA encodes a lysine-sensitive AK. Southern blot hybridization detected a single gene highly homologous to the present cDNA, plus an additional much less homologous gene. This was confirmed by the independent cloning of an additional Arabidopsis cDNA encoding a lysine-sensitive AK (see accompanying paper). Northern blot analysis suggested that the gene encoding this monofunctional AK cDNA is abundantly expressed in most if not all tissues of Arabidopsis.  相似文献   

20.
The gene encoding the hyperthermophilic extracellular alpha-amylase from Pyrococcus furiosus was cloned by activity screening in Escherichia coli. The gene encoded a single 460-residue polypeptide chain. The polypeptide contained a 26-residue signal peptide, indicating that this Pyrococcus alpha-amylase was an extracellular enzyme. Unlike the P. furiosus intracellular alpha-amylase, this extracellular enzyme showed 45 to 56% similarity and 20 to 35% identity to other amylolytic enzymes of the alpha-amylase family and contained the four consensus regions characteristic of that enzyme family. The recombinant protein was a homodimer with a molecular weight of 100,000, as estimated by gel filtration. Both the dimer and monomer retained starch-degrading activity after extensive denaturation and migration on sodium dodecyl sulfate-polyacrylamide gels. The P. furiosus alpha-amylase was a liquefying enzyme with a specific activity of 3,900 U mg-1 at 98 degrees C. It was optimally active at 100 degrees C and pH 5.5 to 6.0 and did not require Ca2+ for activity or thermostability. With a half-life of 13 h at 98 degrees C, the P. furiosus enzyme was significantly more thermostable than the commercially available Bacillus licheniformis alpha-amylase (Taka-therm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号