首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica beads are coated with dextran carrying a calculated amount of positively charged diethylassminoethyl groups (DEAE) in order to neutralize negative charged silanol groups at the silica surface and in this way to minimize non specific interactions between silica surface and proteins in solution. Dextran-coated silica supports are potentially excellent stationary phases for high-performance liquid chromatography of proteins. These supports combine the advantages of polysaccharide phases with the excellent mechanical characteristics of silica. These supports (silica-dextran-DEAE = SID) are easily functionalized by grafting N-acetylglucosamine (GlcNAc) using conventional coupling methods. The performances of the support bearing GlcNAc are studied by high-performance liquid affinity chromatography (HPLAC) of insulin, the hypoglycemic peptide hormone of the human organism. The study shows that these supports exhibit a reversible and specific affinity towards insulin and allow separations with high purification yields. Moreover, the influence of different physico-chemical parameters (pH, NaCl and insulin concentration) on insulin retention on the support was analysed. This allowed us to optimize the conditions of adsorption and to better understand the interaction mechanisms between insulin and GlcNAc as biospecific ligand.  相似文献   

2.
Nonporous, microparticulate, monodisperse silicas with particle diameters between 0.7 and 2.1 microns are introduced as stationary phases in high-performance affinity chromatography. The immobilization of m-aminophenylboronic acid, p-aminobenzamidine, tri-L-alanine, and concanavalin A onto these silicas was successfully achieved using 3-isothiocyanatopropyl-triethoxysilane as an activation reagent. Immobilized phenylboronic acid was applied to the isolation of nucleosides, nucleotides, and glycoprotein hormones such as bovine follicotropin and human chorionic gonadotropin, while immobilized benzamidine was employed for the isolation of the serine proteases thrombin and trypsin, immobilized tri-L-alanine for the separation of pig pancreatic elastase and human leukocyte elastase, and immobilized concanavalin A for the isolation of horseradish peroxidase. In all affinity chromatographic systems studied, the nonporous monodisperse silicas showed improved chromatographic performance compared to results obtained with porous silica supports using identical activation and immobilization procedures. Furthermore, frontal analysis was used as a method to evaluate the influence of experimental parameters on biological activity and accessible ligand densities. Only minor changes in bioactivity were found with the nonporous affinity supports, where accessibilities were typically higher than ca. 60%. The immobilization of affinity ligands onto porous supports as used in this and associated papers thus represents a successful general procedure for the preparation of stable matrices with fast kinetics for use in high-performance affinity chromatography.  相似文献   

3.
Fatty acid-binding proteins (FABPs) are members of a super family of lipid-binding proteins, and occur intracellularly in vertebrates and invertebrates. This review briefly addresses the structural and molecular properties of the fatty acid binding proteins, together with their potential physiological role. Special attention is paid to the methods used to study the binding characteristics of FABPs. An overview of the conventional (Lipidex, the ADIFAB and ITC) and innovative separation-based techniques (chromatographic and electrophoretic methods) for the study of ligand-protein interactions is presented along with a discussion of their strengths, weak points and potential applications. The best conventional approaches with natural fatty acids have generally revealed only limited information about the interactions of fatty acid proteins. In contrast, high-performance affinity chromatography (HPAC) studies of several proteins provide full information on the binding characteristics. The review uses, as an example, the application of immobilized liver basic FABP as a probe for the study of ligand-protein binding by high-performance affinity chromatography. The FABP from chicken liver has been immobilized on aminopropyl silica and the developed stationary phase was used to examine the enantioselective properties of this protein and to study the binding of drugs to FABP. In order to clarify the retention mechanism, competitive displacement studies were also carried out by adding short chain fatty acids to the mobile phase as displacing agents and preliminary quantitative structure-retention relationship (QSRRs) correlations were developed to describe the nature of the interactions between the chemical structures of the analytes and the observed chromatographic results.The results of these studies may shed light on the proposed roles of these proteins in biological systems and may find applications in medicine and medicinal chemistry. This knowledge will yield a deeper insight into the mechanism of fatty acid binding in order to indisputably show the central role played by FABPs in cellular FA transport and utilization for a proper lipid metabolism.  相似文献   

4.
Silica-based packing materials induce non-specific interactions with proteins in aqueous media because of the nature of their surface, mainly silanol groups. Therefore, the silica surface has to be modified in order to be used as stationary phase for the High Performance Size-Exclusion Chromatography (HPSEC) of proteins. For this purpose, porous silica beads were coated with hydrophilic polymer gels (dextrans of different molecular weights) carrying a calculated amount of diethylaminoethyl groups (DEAE). Actually, as shown by HPSEC, these dextran modified supports minimize non-specific adsorption for proteins and pullulans in aqueous solution. Then, in order to change the pore size in response to temperature, temperature responsive polymer of poly(N-isopropylacrylamide) (PIPAAm) was introduced into the surface of dextran-DEAE on porous silica beads. The structure of these supports before and after modification was alternately studied by Scanning Electronic Microscopy (SEM) and Scanning Force Microscopy (SFM). An adsorption of radiolabelled albumin was performed to complete our study. Silica modifications by dextran-DEAE and PIPAAm improve the neutrality of the support and minimize the non-specific interactions between the solid support and proteins in solution. At low temperature, the support having PIPAAm exhibits a high resolution domain in HPSEC and finally permits a better resolution of proteins and pullulans. At higher temperature, hydrophobic properties of PIPAAm produce interactions with some proteins and trigger off a slight delay of their elution time.  相似文献   

5.
A practicable and efficient procedure for preparation of Ricinus communis agglutinin (RCA) affinity adsorbents has been developed. For immobilization of RCA two different polymer-based supports, Toyopearl and TSKgel (TosoHaas), were used. RCA has been successfully immobilized onto these supports with amounts of coupled ligand between 15 and 23 mg/g dry support and corresponding coupling yields of 69-93% (w/w). The prepared affinity adsorbents were characterized concerning their binding capacity for the glycoprotein asialofetuin (ASF) and accessibility of the ligand binding sites. The high accessibility of 80% showed that steric hindrance was negligible at the present ligand density. RCA-Toyopearl was successfully applied in affinity chromatography of glycoproteins indicating its high specificity. A long-term stability test proved no change in capacity for a period of at least 12 months. High-performance affinity chromatography (HPLAC) was carried out using RCA-TSKgel. Experimental results showed that the prepared adsorbents are suitable for selective separation of glycoproteins and oligosaccharides and therefore can be used for investigations of adsorption characteristics of glycoconjugates and for laboratory-scale preparations.  相似文献   

6.
Heparin and heparan sulfates are regulators of cellular events including adhesion, proliferation and migration. In particular, the antiproliferative effect of heparin on smooth muscle cell (SMC) growth is well described. However, its mechanism of action remains unclear. Numerous results suggest an endocytosis mediated by a still unknown heparin receptor on vascular SMCs. In order to identify a putative heparin receptor on SMCs that could be involved in heparin signalling, affinity chromatography supports were developed. In this paper, we describe high-performance liquid affinity chromatography (HPLAC) supports obtained from silica beads coated with dextran polymer substituted by a calculated amount of diethylaminoethyl functions. With a polysaccharide dextran layer, this type of support can be grafted with specific ligands, such as heparin, using conventional coupling methods. In a previous work, we demonstrated, using butanedioldiglycidyl ether, that silica stationary phases coupled to heparin could be used for the fast elution and good peak resolution of heparin-binding proteins. In the present work, an affinity chromatographic fraction of SMC membrane extracts was analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and six heparin-binding proteins from dodecyloctaethyleneglycol monoether-solubilized SMCs were observed. Their Mr values were between 40 and 70 kDa, with three major protein bands at 66, 45 and 41 kDa. These results indicate the usefulness of the chromatographic method for purifying heparin binding proteins from SMC membrane.  相似文献   

7.
A high-performance affinity chromatography support based on silica has been developed for the immobilization of proteins containing primary amino groups. A hydrophilic polymer covalently bound to the silica surface minimizes nonspecific protein binding to the support while preserving high binding capacity. The Schiff base reaction involved in the coupling of a ligand to the affinity medium is rapid, allows the use of mild conditions during the coupling process, and results in a very stable linkage. Reaction parameters were studied for protein coupling to the affinity support to determine optimum binding conditions and dynamic capacity as a function of protein size. The stability of the ligand-matrix bond was determined. The performance and reproducibility of the affinity support are demonstrated by its use in the analysis of nitrophenyl sugar derivatives, purification of glycoproteins, and isolation of anti-bovine immunoglobulin G developed in rabbit.  相似文献   

8.
Concanavalin A (Con A) was selected as ligand and thus immobilized onto two different supports, namely the polymeric Toyopearl and the inorganic silica, with the protection of its binding sites provided during the coupling procedure. The prepared Con A affinity adsorbents were then employed to evaluate their adsorption behaviour for the enzyme glucose oxidase (GOD). The immobilization kinetics showed that the immobilization of Con A on silica supports was much faster than that on Toyopearl supports, which could highly reduce the possibility of the denaturation of Con A. The optimal adsorption conditions for binding of GOD onto the ligand were determined in terms of the pH value and the ionic strength of the adsorption medium. The adsorption isotherms for binding GOD onto two Con A affinity adsorbents fitted well with the Langmuir equation. The maximum adsorption capacity q(m) of Toyopearl Con A and silica Con A were 7.9 mg/ml and 4.9 mg/ml, with a dissociation constant K(d) of 4.8 x 10(-7)M and 2.6 x 10(-6)M, respectively. Due to the less diffusive resistance, silica Con A showed both higher adsorption and desorption rates for GOD when compared with Toyopearl Con A. The nonspecific adsorption of GOD was less than 8% for both end-capped Toyopearl and silica supports. The dynamic adsorption of GOD for five times repeated processes showed a high stability for both prepared adsorbents. All the results indicate a good suitability of both Con A adsorbents for affinity adsorption of GOD.  相似文献   

9.
Yin CQ  He BJ  Huang SH  Zhang JY  Bai ZW  Li ZY 《Chirality》2008,20(7):846-855
Four dendrimers were synthesized on aminopropyl-modified silica gel using methyl acrylate and ethylene diamine as building blocks by divergent method. Four generations of chiral stationary phases (CSPs) were prepared by coupling of L-2-(p-toluenesulfonamido)-3-phenylpropionyl chloride to corresponding dendrimers. The derivatives prepared on silica gel were characterized by FT-IR, (1)H NMR, and elemental analysis. The selector loadings of these four generations of CSPs generally showed a decrease tendency with the increase of generation numbers of dendrimers. The enantioseparation properties of these CSPs were preliminarily investigated by high-performance liquid chromatography. The CSP derived from the three-generation dendrimer exhibited the best enantioseparation capability. Effects of the mobile phase composition and molecular structures of racemic mixtures on enantioseparation were further studied.  相似文献   

10.
In addition to most chlorophylls and their derivatives, monovinyl and divinyl chlorophyll species were separated by high-performance liquid chromatography, using a polyethylene column and a simple elution with aqueous acetone. Peak retention and resolution of the pigment separation were greatly increased by increasing the polarity of the mobile phase and also by decreasing the column temperature. Polyethylene chromatography showed chlorophyll separation behavior similar to that of the octadecyl silica column, but it showed no adsorption of the pigment species containing free carboxylic acid groups, enabling the complete separation of chlorophylls and their derivatives. Polyethylene is a superior alternative stationary phase to the known reversed-phase materials for chlorophyll separation and analysis.  相似文献   

11.
Pyridine was coupled covalently to a nonionic ethoxylated alcohol: octaethylene glycol n-hexadecyl ether. This modified surfactant was found to be a reversible, competitive inhibitor of horse serum cholinesterase. The surfactant bound irreversibly, in aqueous media, to octadecyl-bounded reverse phase silica particles commonly used for high-performance liquid chromatography. The amount of ligand bound was found to be 550 mumol/ml of packing, a concentration that is over 100 times higher than what can be normally bound to agarose affinity chromatography supports. With this packing, a 280-fold purification of cholinesterase from horse serum and a 79-fold purification of human serum cholinesterase were accomplished, with yields greater than 80%, using a 2-cm-long column and a 7-min elution time. The affinity surfactant could be eluted from the column using a 6:4 (v/v) mixture of methanol and isopropanol. This technique should be generally applicable in the development of biospecific supports for high-performance affinity chromatography.  相似文献   

12.
When using weakly interacting ligands in affinity chromatography, it is possible to take advantage of a true chromatographic process in the separation, as compared with traditional affinity chromatography which is rather an on/off process. In this work, weak monoclonal antibodies were immobilized on a silica and a perfusion-type support (POROS AL) and used for high-performance liquid affinity chromatography (HPLAC). Similar carbohydrate antigens were separated under isocratic conditions according to their weak interaction with the immobilized monoclonal antibody. The affinity of the antibodies was adjusted with temperature and pH to modify the separation. The productivity of the chromatographic system was increased with the immobilized perfusion support but at the expense of loss of plate numbers. This study clearly demonstrates the potential of weak affinity biological interactions as a basis for chromatographic separation.  相似文献   

13.
High-performance liquid affinity chromatography is a powerful method for the purification of biological compounds owing to its specificity, rapidity and high resolution. In our laboratory, we develop chromatographic supports based on porous silica beads. However, in order to minimize non-specific interactions between the inorganic surface and proteins in aqueous solution, the silica beads are coated with modified dextran. As previously reported, many affinity ligands can be covalently grafted onto dextran-coated silica. In this study, N-acetylneuramic acid, which belongs to the sialic acid family and is present in immunoglobulin G (IgG) epitopes, is used as an active ligand. The interactions of this affinity support and IgG subclasses are analyzed. This immobilized ligand enables purification of IgG3 antibodies.  相似文献   

14.
It is very important to understand the equilibrium and dynamic characteristics of biospecific adsorption (affinity chromatography) for both scientific and application purposes. Experimental equilibrium and dynamic column data are presented on the adsorption of lysozyme onto antibody immobilized on nonporous silica particles. The Langmuir model is found to represent the equilibrium experimental data satisfactorily, and the equilibrium association constants and heats of adsorption have been estimated for two systems with different ligand densities. The effects of nonspecific interactions are more pronounced in the system with low-density ligand. The dynamic interaction kinetic parameters are estimated by matching the predictions of a fixed-bed model with the experimental breakthrough curves. The agreement between theory and experiment is good for the initial phases of breakthrough, where the mechanism of biospecific adsorption is dominant. In the later phase (saturation neighborhood) of breakthrough, the effects of nonspecific interactions appear to be greater in the low-density ligand system. The kinetics of the nonspecific interactions were estimated from the data of the later phase of breakthrough and were found to be considerably slower than those attributed to biospecific adsorption.  相似文献   

15.
16.
Frontal affinity chromatography (FAC) is a biophysical method for the discovery and characterization of molecular interactions in a flow-based system. Several different modes of analysis are possible by interfacing to the mass spectrometer, including robust single-compound characterizations as well as high-throughput screening of over 1,000 compounds per run. The method supports thermodynamic and kinetic characterization of interactions for a wide range of molecular species and possesses similarities to flow-based biosensors such as surface plasmon resonance. It offers sensitive detection of ligands present well below their respective dissociation constants, and can be assembled from readily available laboratory components. Direct coupling of the FAC cartridge to the mass spectrometer is useful for the interrogation of single compounds or mixtures of limited complexity. An offline fractionation schema is more appropriate for discovery-mode applications. A high-performance FAC system enabling both modes can be assembled in 2-3 h. Measurements of dissociation constants can be made with such a system in 0.5-3 h, and the system supports higher-throughput screening modes at a rate of 10,000 compounds d(-1).  相似文献   

17.
The concentration dependence of the number average molecular weight of insulin at pH 2, ionic strength 0.05, and 20 degrees C as determined by osmotic pressure measurements indicates that the hormone is a homogeneous protein of molecular weight close to that of the dimer. Since sedimentation equilibrium experiments confirm what is well known, namely that insulin is a self-associating protein dissociating to monomer under these conditions, an explanation for the anomaly was sought in the possible loss of protein from solution by adsorption. Analysis of the results strongly supports this conclusion and consideration of the adsorption properties of insulin in terms of hydrophobic interactions shows them to be consistent with the behaviour of insulin as a self-associating protein. The monomer appears to be the primary molecular species responsible for insulin adsorption.  相似文献   

18.
A method is described based on high-performance immunoaffinity chromatography for examining the interactions of immobilized antibodies or related binding agents with their targets. It is shown how this method can be used to obtain information on the binding, elution and regeneration kinetics of immobilized binding agents, such as those used with immunoaffinity supports. The theory behind this approach is briefly described and it is demonstrated how both the kinetic and thermodynamic properties of a biointeraction can be determined experimentally through this method. Several applications are used to illustrate this technique, including antibody-antigen interactions and the binding of aptamers with their targets in the presence of silica-based supports. The same approach can be adapted for use with other types of targets, binding agents and support materials.  相似文献   

19.
The potential of reverse-phase high-performance liquid chromatography for the separation of closely related proteins has been investigated. Using an octadecasilyl silica stationary phase and a propanol/pyridine formate solvent system normal α- and β-chains of human hemoglobin have been separated from several of their respective mutant chains which differ by single amino acid residues only. The results suggest that reverse-phase high-performance liquid chromatography is a powerful tool for the separation of medium-sized proteins with minimal structural difference.  相似文献   

20.
The review concerns isolation and purification of nucleases by affinity chromatography. Different stationary ligands and the methods for their immobilization on supports are described, along with diverse eluents and various procedures for a nuclease detachment from the affinity sorbents. The data on the affinity chromatography application for measuring the dissociation constants of the enzyme complexes with either immobilized or soluble ligands are compiled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号