首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We performed linkage analysis in a Belgian family with autosomal dominant midfrequency hearing loss, which has a prelingual onset and a nonprogressive course in most patients. We found LOD scores >6 with markers on chromosome 11q. Analysis of key recombinants maps this deafness gene (DFNA12) to a 36-cM interval on chromosome 11q22-24, between markers D11S4120 and D11S912. The critical regions for the recessive deafness locus DFNB2 and the dominant locus DFNA11, which were previously localized to the long arm of chromosome 11, do not overlap with the candidate interval of DFNA12.  相似文献   

3.
A gene causing autosomal-recessive, nonsyndromic hearing loss, DFNB39, was previously mapped to an 18 Mb interval on chromosome 7q11.22-q21.12. We mapped an additional 40 consanguineous families segregating nonsyndromic hearing loss to the DFNB39 locus and refined the obligate interval to 1.2 Mb. The coding regions of all genes in this interval were sequenced, and no missense, nonsense, or frameshift mutations were found. We sequenced the noncoding sequences of genes, as well as noncoding genes, and found three mutations clustered in intron 4 and exon 5 in the hepatocyte growth factor gene (HGF). Two intron 4 deletions occur in a highly conserved sequence that is part of the 3′ untranslated region of a previously undescribed short isoform of HGF. The third mutation is a silent substitution, and we demonstrate that it affects splicing in vitro. HGF is involved in a wide variety of signaling pathways in many different tissues, yet these putative regulatory mutations cause a surprisingly specific phenotype, which is nonsydromic hearing loss. Two mouse models of Hgf dysregulation, one in which an Hgf transgene is ubiquitously overexpressed and the other a conditional knockout that deletes Hgf from a limited number of tissues, including the cochlea, result in deafness. Overexpression of HGF is associated with progressive degeneration of outer hair cells in the cochlea, whereas cochlear deletion of Hgf is associated with more general dysplasia.  相似文献   

4.
A missense mutation of Gipc3 was previously reported to cause age-related hearing loss in mice. Point mutations of human GIPC3 were found in two small families, but association with hearing loss was not statistically significant. Here, we describe one frameshift and six missense mutations in GIPC3 cosegregating with DFNB72 hearing loss in six large families that support statistically significant evidence for genetic linkage. However, GIPC3 is not the only nonsyndromic hearing impairment gene in this region; no GIPC3 mutations were found in a family cosegregating hearing loss with markers of chromosome 19p. Haplotype analysis excluded GIPC3 from the obligate linkage interval in this family and defined a novel locus spanning 4.08?Mb and 104 genes. This closely linked but distinct nonsyndromic hearing loss locus was designated DFNB81.  相似文献   

5.
We ascertained three consanguineous Pakistani families (PKDF291, PKDF335 and PKDF793) segregating nonsyndromic recessive hearing loss. The hearing loss segregating in PKDF335 and PKDF793 is moderate to severe, whereas it is profound in PKDF291. The maximum two-point LOD scores are 3.01 (D19S1034), 3.85 (D19S894) and 3.71 (D19S894) for PKDF291, PKDF335 and PKDF793, respectively. Haplotype analyses of the three families define a 1.16 Mb region of overlap of the homozygous linkage intervals bounded by markers D19S216 (20.01 cM) and D19S1034 (20.75 cM). These results define a novel locus, DFNB72, on chromosome 19p13.3. There are at least 22 genes in the 1.16 Mb interval, including PTPRS, ZNRF4 and CAPS. We identified no pathogenic variants in the exons and flanking intronic sequences of these three genes in affected members of the DFNB72 families. DFNB72 is telomeric to DFNB68, the only other known deafness locus with statistically significant support for linkage to chromosome 19p.  相似文献   

6.
Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing loss. Auditory brainstem response (ABR) test of the youngest patient showed a special result with nearly normal threshold but prolonged latency, decreased amplitude, and the abnormal waveform morphology. Exome sequencing of the proband found four candidate variants in known hearing loss genes. Sanger sequencing in all family members found a novel variant c.1253T>A (p.M418K) in TMC1 at DFNA36 that co-segregated with the phenotype. This mutation in TMC1 is orthologous to the mutation found in the hearing loss mouse model named Bth ten years ago. In another 51 Chinese autosomal dominant hearing loss families, we screened the segments containing the dominant mutations of TMC1 and no functional variants were found. TMC1 is expressed in the hair cells in inner ear. Given the already known roles of TMC1 in the mechanotransduction in the cochlea and its expression in inner ear, our results may provide an interesting perspective into its function in inner ear.  相似文献   

7.
Targeted genome capture combined with next-generation sequencing was used to analyze 2.9 Mb of the DFNB79 interval on chromosome 9q34.3, which includes 108 candidate genes. Genomic DNA from an affected member of a consanguineous family segregating recessive, nonsyndromic hearing loss was used to make a library of fragments covering the DFNB79 linkage interval defined by genetic analyses of four pedigrees. Homozygosity for eight previously unreported variants in transcribed sequences was detected by evaluating a library of 402,554 sequencing reads and was later confirmed by Sanger sequencing. Of these variants, six were determined to be polymorphisms in the Pakistani population, and one was in a noncoding gene that was subsequently excluded genetically from the DFNB79 linkage interval. The remaining variant was a nonsense mutation in a predicted gene, C9orf75, renamed TPRN. Evaluation of the other three DFNB79-linked families identified three additional frameshift mutations, for a total of four truncating alleles of this gene. Although TPRN is expressed in many tissues, immunolocalization of the protein product in the mouse cochlea shows prominent expression in the taper region of hair cell stereocilia. Consequently, we named the protein taperin.  相似文献   

8.
Nonsyndromic deafness locus (DFNB48) segregating as an autosomal recessive trait has been mapped to the long arm of chromosome 15 in bands q23-q25.1 in five large Pakistani families. The deafness phenotype in one of these five families (PKDF245) is linked to D15S1005 with a lod score of 8.6 at =0, and there is a critical linkage interval of approximately 7 cM on the Marshfield human genetic map, bounded by microsatellite markers D15S216 (70.73 cM) and D15S1041 (77.69 cM). MYO9A, NR2E3, BBS4, and TMC3 are among the candidate genes in the DFNB48 region. The identification of another novel nonsyndromic recessive deafness locus demonstrates the high degree of locus heterogeneity for hearing impairment, particularly in the Pakistani population.  相似文献   

9.
We previously mapped the DFNB17 locus to a 3-4 cM interval on human chromosome 7q31 in a large consanguineous Indian family with congenital profound sensorineural hearing loss. To further refine this interval, 30 new highly polymorphic markers and 8 SNPs were analyzed against the pedigree. Re-analysis in the original DFNB 17 family and additional data from a second unrelated consanguineous family with congenital deafness found to map to the interval, limited the area of shared homozygosity-by-descent (HBD) to approximately 4 megabase (Mb) between markers D7S2453 and D7S525. Nineteen known genes and over 20 other cDNAs have been identified in the refined DFNB 17 interval, including the SLC26A4 gene. We have analyzed 4 other cochlear-expressed genes that map to the DFNB17 interval as candidate genes. Analysis of coding and splice site regions of these cochlear expressed genes did not reveal any disease causing mutations. Further study of other candidate genes is currently underway.  相似文献   

10.
Human MYO7A mutations can cause a variety of conditions involving the inner ear. These include dominant and recessive non-syndromic hearing loss and syndromic conditions such as Usher syndrome. Mouse models of deafness allow us to investigate functional pathways involved in normal and abnormal hearing processes. We present two novel mouse models with mutations in the Myo7a gene with distinct phenotypes. The mutation in Myo7aI487N/I487N ewaso is located within the head motor domain of Myo7a. Mice exhibit a profound hearing loss and manifest behaviour associated with a vestibular defect. A mutation located in the linker region between the coiled-coil and the first MyTH4 domains of the protein is responsible in Myo7aF947I/F947I dumbo. These mice show a less severe hearing loss than in Myo7aI487N/I487N ewaso; their hearing loss threshold is elevated at 4 weeks old, and progressively worsens with age. These mice show no obvious signs of vestibular dysfunction, although scanning electron microscopy reveals a mild phenotype in vestibular stereocilia bundles. The Myo7aF947I/F947I dumbo strain is therefore the first reported Myo7a mouse model without an overt vestibular phenotype; a possible model for human DFNB2 deafness. Understanding the molecular basis of these newly identified mutations will provide knowledge into the complex genetic pathways involved in the maintenance of hearing, and will provide insight into recessively inherited sensorineural hearing loss in humans.  相似文献   

11.
A genome wide linkage analysis of nonsyndromic deafness segregating in a consanguineous Pakistani family (PKDF537) was used to identify DFNB63, a new locus for congenital profound sensorineural hearing loss. A maximum two-point lod score of 6.98 at θ = 0 was obtained for marker D11S1337 (68.55 cM). Genotyping of 550 families revealed three additional families (PKDF295, PKDF702 and PKDF817) segregating hearing loss linked to chromosome 11q13.2-q13.3. Meiotic recombination events in these four families define a critical interval of 4.81 cM bounded by markers D11S4113 (68.01 cM) and D11S4162 (72.82 cM), and SHANK2, FGF-3, TPCN2 and CTTN are among the candidate genes in this interval. Positional identification of this deafness gene should reveal a protein necessary for normal development and/or function of the auditory system.  相似文献   

12.
The DFNB79 locus harbors TPRN mutations in which have been reported in a few families with deafness. Four frameshift mutations in TPRN have been described to cause severe or severe-to-profound hearing loss in Moroccan and Pakistani families, and a single frameshift mutation was associated with progressive hearing loss in deaf individuals in a Dutch family. We identified a Pakistani family in which the affected individuals were homozygous for a pathogenic mutation, c.42_52del11, in TPRN (p.G15Afs150X). In contrast to the previously reported individuals affected by the same mutation, hearing loss is likely to be progressive in this family. Thus the same mutation of TPRN can be associated with different thresholds of hearing as well as differences in the stability of the phenotype.  相似文献   

13.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is the most common form of severe inherited childhood deafness. We present the linkage analysis of two inbred Bedouin kindreds from Israel that are affected with ARNSHL. A rapid genomewide screen for markers linked to the disease was performed by using pooled DNA samples. This screen revealed evidence for linkage with markers D9S922 and D9S301 on chromosome 9q. Genotyping of individuals from both kindreds confirmed linkage to chromosome 9q and a maximum combined LOD score of 26.2 (recombination fraction [theta] .025) with marker D9S927. The disease locus was mapped to a 1.6-cM region of chromosome 9ql3-q2l, between markers D9S15 and D9S927. The disease segregates with a common haplotype in the two kindreds, at markers D9S927, D9S175, and D9S284 in the linked interval, supporting the hypothesis that both kindreds inherited the deafness gene from a common ancestor. Although this nonsyndromic-hearing-loss (NSHL) locus maps to the same cytogenetic interval as DFNB7, it does not overlap the currently defined DFNB7 interval and may represent (1) a novel form of NSHL in close proximity to DFNB7 or (2) a relocalization of the DFNB7 interval to a region telomeric to its reported location. This study further demonstrates that DNA pooling is an effective means of quickly identifying regions of linkage in inbred families with heterogeneous autosomal recessive disorders.  相似文献   

14.
The enzyme tyrosinase (monophenol,L-dopa:oxygen oxidoreductase; EC 1.14.18.1) catalyzes the first two steps in the conversion of tyrosine to melanin, the major pigment found in melanocytes. Some forms of oculocutaneous albinism, characterized by the absence of melanin in skin and eyes and by a deficiency of tyrosinase activity, may result from mutations in the tyrosinase structural gene. A recently isolated human tyrosinase cDNA was used to map the human tyrosinase locus (TYR) to chromosome 11, region q14----q21, by Southern blot analysis of somatic cell hybrid DNA and by in situ chromosomal hybridization. A second site of tyrosinase-related sequences was detected on the short arm of chromosome 11 near the centromere (p11.2----cen). Furthermore, we have confirmed the localization of the tyrosinase gene in the mouse at or near the c locus on chromosome 7. Comparison of the genetic maps of human chromosome 11 and mouse chromosome 7 leads to hypotheses regarding the evolution of human chromosome 11.  相似文献   

15.
16.
Hereditary hearing loss with the autosomal recessive mode of inheritance with DFNB1 genetic type, caused by mutations in the GJB2 gene, is major cause of congenital non-syndromal hearing impairment in most developed countries of the world (including Russia). Intragenic point mutations prevail among the GJB2 gene defects; however, large deletions in the DFNB1 locus are also found with considerable frequency in some populations (for example, Spain, Great Britain, France, United States, and Brazil). Among the four known large deletions, only one deletion affects directly the GJB2 gene sequence and was described in a single family. A new large deletion encompassing both the GJB2 and GJB6 gene sequences of approximately 101 kb in size (NC_000013.10:g.20,757,021_20,858,394del), detected in three unrelated Russian patients, is described and characterized in this essay. Ingush origin of this mutation is assumed. If the new deletion is frequent, its detection is very important for the genetic consulting to families with hereditary hearing impairment.  相似文献   

17.
Mutations of MYO6 are associated with recessive deafness,DFNB37   总被引:10,自引:0,他引:10       下载免费PDF全文
Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37, our sequence analyses of MYO6 reveal a frameshift mutation (36-37insT), a nonsense mutation (R1166X), and a missense mutation (E216V). These mutations, along with a previously published missense allele linked to autosomal dominant progressive hearing loss (DFNA22), provide an allelic spectrum that probes the relationship between myosin VI dysfunction and the resulting phenotype.  相似文献   

18.
Already 40 genes have been identified for autosomal-recessive nonsyndromic hearing impairment (arNSHI); however, many more genes are still to be identified. In a Dutch family segregating arNSHI, homozygosity mapping revealed a 2.4 Mb homozygous region on chromosome 11 in p15.1-15.2, which partially overlapped with the previously described DFNB18 locus. However, no putative pathogenic variants were found in USH1C, the gene mutated in DFNB18 hearing impairment. The homozygous region contained 12 additional annotated genes including OTOG, the gene encoding otogelin, a component of the tectorial membrane. It is thought that otogelin contributes to the stability and strength of this membrane through interaction or stabilization of its constituent fibers. The murine orthologous gene was already known to cause hearing loss when defective. Analysis of OTOG in the Dutch family revealed a homozygous 1 bp deletion, c.5508delC, which leads to a shift in the reading frame and a premature stop codon, p.Ala1838ProfsX31. Further screening of 60 unrelated probands from Spanish arNSHI families detected compound heterozygous OTOG mutations in one family, c.6347C>T (p.Pro2116Leu) and c. 6559C>T (p.Arg2187X). The missense mutation p.Pro2116Leu affects a highly conserved residue in the fourth von Willebrand factor type D domain of otogelin. The subjects with OTOG mutations have a moderate hearing impairment, which can be associated with vestibular dysfunction. The flat to shallow “U” or slightly downsloping shaped audiograms closely resembled audiograms of individuals with recessive mutations in the gene encoding α-tectorin, another component of the tectorial membrane. This distinctive phenotype may represent a clue to orientate the molecular diagnosis.  相似文献   

19.
A total of 111 unrelated probands and their 8 sibs from Grodno oblast (Belarus) with bilateral isolated sensorineural hearing impairment were studied for the presence of mutations in the connexin 26 (GJB2) gene. Mutations were detected in 51 probands (46% of the sample). A significantly higher frequency of the GJB2 gene mutations was observed in familial cases of the disease with the autosomal recessive mode of inheritance (in 78% of families). Detected characteristics of the GJB2 gene mutation spectrum demonstrated that the using the algorithm, which was designed for Russian patients, is optimal for the molecular study of patients from Belarus. In the sample of patients with hearing loss, the highest (among other similar samples studied in the world) allele frequency of c.313_326del14 mutation (7% of all pathological GJB2 alleles) was registered; Polish origin of this deletion was suggested. It was demonstrated that detection of the GJB2 gene mutation on one patient’s chromosome only is insufficient to confirm a molecular genetic diagnosis of hearing loss of the DFNB1 genetic type (autosomal recessive hearing loss caused by the GJB2 gene mutations). Pilot screening for the GJB2 gene mutations in newborns from Grodno oblast was performed. The material from 235 children was studied during the screening; nine heterozygous carriers of the mutation were found. The c.35delG mutation was detected in a homozygous state in a single newborn (hearing loss of moderate severity was subsequently audiologically confirmed in this child).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号