首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian RACK1 protein binds activated protein kinase C, acting as an intracellular receptor to anchor the activated PKC to the cytoskeleton. Genes encoding RACK1-like proteins have been isolated from a wide range of eucaryotic organisms; we report the isolation of a Drosophila member of this family. This Drosophila RACK1-like protein shows 76% identity to the mammalian RACK1 proteins, but only about 60% identity to related proteins from plants and fungi. The Drosophila rack1 gene has a dynamic pattern of expression during early embryogenesis with the highest expression in the mesodermal and endodermal lineages.  相似文献   

2.
In Trypanosoma brucei, DNA recombination is crucial in antigenic variation, a strategy for evading the mammalian host immune system found in a wide variety of pathogens. T.brucei has the capacity to encode >1000 antigenically distinct variant surface glycoproteins (VSGs). By ensuring that only one VSG is expressed on the cell surface at one time, and by periodically switching the VSG gene that is expressed, T.brucei can evade immune killing for prolonged periods. Much of VSG switching appears to rely on a widely conserved DNA repair pathway called homologous recombination, driven by RAD51. Here, we demonstrate that T.brucei encodes a further five RAD51-related proteins, more than has been identified in other single-celled eukaryotes to date. We have investigated the roles of two of the RAD51-related proteins in T.brucei, and show that they contribute to DNA repair, homologous recombination and RAD51 function in the cell. Surprisingly, however, only one of the two proteins contributes to VSG switching, suggesting that the family of diverged RAD51 proteins present in T.brucei have assumed specialized functions in homologous recombination, analogous to related proteins in metazoan eukaryotes.  相似文献   

3.
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M.  相似文献   

4.
5.
The ras superfamily of GTP binding proteins encompasses a wide range of family members, related by conserved amino-acid motifs, and act as molecular binary switches that play key roles in cellular processes. Gene duplication and divergence has been postulated as the mechanism by which such family members have evolved their specific functions. We have cloned and sequenced a ras-like gene, tbrlp, from the primitive eukaryote Trypanosoma brucei. The gene encodes a protein of 227 amino acids and contains the six conserved subdomains that designate it as a ras/rap subfamily member. However, the presence of key diagnostic residues characteristic of both the ras and rap families of GTP confuse the familial classification of this gene. Phylogenetic analysis of the GTP binding domain places its origins at the divergence point of the ras/rap families and suggests that tbrlp is an ancestral gene to the ras/rap genes of higher eukaryotes.  相似文献   

6.
The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis.  相似文献   

7.
The gene BRCA2, first identified as a breast cancer susceptibility locus in humans, encodes a protein involved in DNA repair in mammalian cells and mutations in this gene confer increased risk of breast cancer. Here we report a functional characterisation of a Trypanosoma brucei BRCA2 (TbBRCA2) orthologue and show that the protein interacts directly with TbRAD51. A further protein-protein interaction screen using TbBRCA2 identified other interacting proteins, including a trypanosome orthologue of CDC45 which is involved in initiation and progression of the replication fork complex during DNA synthesis. Deletion of the TbBRCA2 gene retards cell cycle progression during S-phase as judged by increased incorporation of BrdU and an increased percentage of cells with one nucleus and two kinetoplasts. These results provide insights into the potential role played by BRCA2 in DNA replication and reveal a novel interaction that couples replication and recombination in maintaining integrity of the genome.  相似文献   

8.
Seven members of the Mix family of paired-type homeoproteins regulate mesoderm/endoderm differentiation in amphibians. In mammals, the MIXL1 (Mix. 1 homeobox [Xenopus laevis]-like gene 1) gene is the sole representative of this family. Unlike the amphibian Mix genes that encode an open reading frame of >300 amino acids, mammalian MIXL1 encodes a smaller protein (~230aa). However, mammalian MIXL1 contains a unique proline-rich domain (PRD) with a potential to interact with signal transducing Src homolgy 3 (SH3) domains. Notably, human MIXL1 also contains a unique tyrosine residue Tyr20 that is amino-terminal to the PRD. Here we report that mammalian MIXL1 protein is phosphorylated at Tyr20 and the phosphorylation is dramatically reduced in the absence of PRD. Our findings are consistent with Tyr20 phosphorylation of MIXL1 being a potential regulatory mechanism that governs its activity.  相似文献   

9.
Two self-incompatibility genes in Brassica, SLG and SRK (SLG encodes a glycoprotein; SRK encodes a receptor-like kinase), are included in the S multigene family. Products of members of the S multigene family have an SLG-like domain (S domain) in common, which may function as a receptor. In this study, three clustered members of the S multigene family, BcRK1, BcRL1 and BcSL1, were characterized. BcRK1 is a putative functional receptor kinase gene expressed in leaves, flower buds and stigmas, while BcRL1 and BcSL1 are considered to be pseudogenes because deletions causing frameshifts were identified in these sequences. Sequence and expression pattern of BcRK1 were most similar to those of the Arabidopsis receptor-like kinase gene ARK1, indicating that BcRK1 might have a function similar to that of ARK1, in processes such as cell expansion or plant growth. Interestingly, the region containing BcRK1, BcRL1 and BcSL1 is genetically linked to the S locus and the physical distance between SLG, SRK and the three S-related genes was estimated to be less than 610 kb. Thus the genes associated with self-incompatibility exist within a cluster of S-like genes in the genome of Brassica.  相似文献   

10.
The Pto gene from the wild tomato (Solanum pimpinellifolium Mill.) encodes a serine/threonine kinase that plays an important role in bacterial speck resistance in the cultivated tomato (Solanum lycopersicum Mill.). In this paper, 10 classes of Pto-like genes are identified using degenerate polymerase chain reaction (PCR) primers and database mining in pepper. Sequences alignment reveals that many features of the gene family, such as subdomains, autophosphorylation sites, and important amino acid residues for tomato Pto, are well conserved in pepper. A phylogenetic tree of pepper Pto-like genes along with those of other plant species, including tomato Pto genes, suggests that these genes share a common evolutionary origin, and they may have evolved prior to the divergence of monocotyledonous and dicotyledonous plants. Expression analysis has revealed that nine selected Pto-like genes can be detected in at least one of the tissues grown under normal growth conditions; however, these genes are differentially expressed. In addition, some of these genes are regulated by at least one of the subjected treatments, including hormones, abiotic stress, and pathogen infection. These findings will contribute to expanding our knowledge of the roles of Pto-like genes in growth, development, and stress tolerance in pepper.  相似文献   

11.
12.
We have recently purified mammalian sterile 20 (STE20)–like kinase 3 (MST3) as a kinase for the multifunctional kinases, AMP-activated protein kinase–related kinases (ARKs). However, unresolved questions from this study, such as remaining phosphorylation activities following deletion of the Mst3 gene from human embryonic kidney cells and mice, led us to conclude that there were additional kinases for ARKs. Further purification recovered Ca2+/calmodulin-dependent protein kinase kinases 1 and 2 (CaMKK1 and 2), and a third round of purification revealed mitogen-activated protein kinase kinase kinase kinase 5 (MAP4K5) as potential kinases of ARKs. We then demonstrated that MST3 and MAP4K5, both belonging to the STE20-like kinase family, could phosphorylate all 14 ARKs both in vivo and in vitro. Further examination of all 28 STE20 kinases detected variable phosphorylation activity on AMP-activated protein kinase (AMPK) and the salt-inducible kinase 3 (SIK3). Taken together, our results have revealed novel relationships between STE20 kinases and ARKs, with potential physiological and pathological implications.  相似文献   

13.
We characterized a gene encoding an YchF-related protein, TcYchF, potentially associated with the protein translation machinery of Trypanosoma cruzi. YchF belongs to the translation factor-related (TRAFAC) class of P-loop NTPases. The coding region of the gene is 1185 bp long and encodes a 44.3 kDa protein. BlastX searches showed TcYchF to be very similar (45-86%) to putative GTP-binding proteins from eukaryotes, including some species of trypanosomatids (Leishmania major and Trypanosoma brucei). A lower but significant level of similarity (38-43%) was also found between the predicted sequences of TcYchF and bacterial YyaF/YchF GTPases of the Spo0B-associated GTP-binding protein (Obg) family. Some of the most important features of the G domain of this family of GTPases are conserved in TcYchF. However, we found that TcYchF preferentially hydrolyzed ATP rather than GTP. The function of YyaF/YchF is unknown, but other members of the Obg family are known to be associated with ribosomal subunits. Immunoblots of the polysome fraction from sucrose gradients showed that TcYchF was associated with ribosomal subunits and polysomes. Immunoprecipitation assays showed that TcYchF was also associated with the proteasome of T. cruzi. Furthermore, inactivation of the T. brucei homolog of TcYchF by RNA interference inhibited the growth of procyclic forms of the parasite. These data suggest that this protein plays an important role in the translation machinery of trypanosomes.  相似文献   

14.
《Gene》1996,171(1):123-127
A full-length cDNA clone, Th1433, (GenBank accession No. U24158), was isolated and characterized from the filamentous fungus, Trichoderma harzianum. The deduced amino acid (aa) sequence showed an acidic 30-kDa protein homologous to the 14-3-3 proteins, a family of putative kinase regulators originally characterized in mammalian brain tissue. The greatest homology, 71% identical aa, was found to BMH1, the corresponding protein from Saccharomyces cerevisiae and to the ε isoform from sheep brain. Southern analysis of genomic DNA indicated that Th1433 is a member of a small genomic family. At least two genes encoding 14-3-3-like proteins exist in T. harzianum. Northern analysis showed the highest level of expression during the first day after inoculation of the culture with conidial spores.  相似文献   

15.
We describe genetic interactions between mutations in mgr, asp, and polo, genes required for the correct behaviour of the spindle poles in Drosophila. The phenotype of a polo 1 mgr double mutant is more similar to mgr than polo 1 , but the frequency of circular monopolar figures (CMFs) seen with either mutant alone is additive, suggesting that the two gene products are required for independent functions in the formation of bipolar spindles. The asp E3 mgr double mutant arrests much earlier in development than either mutant alone, indicative of a strong block to cell proliferation. We discuss whether the lack of microtubular structures in these cells reflects an extended mitotic arrest, or if it is a more direct consequence of the double mutant combination. A polo 1 asp E3 double mutant shows a dramatic synergistic increase in mitotic frequency. The loss of CMFs normally associated with the polo 1 phenotype suggests that the Asp microtubule-associated protein is required to maintain the structure of spindle poles. We speculate that Asp protein might be a substrate for the serine-threonine protein kinase encoded by polo. Received: 8 August 1998 / Accepted: 13 September 1998  相似文献   

16.
The remarkable regenerative ability of planarians is made possible by a system of pluripotent stem cells. Recent molecular biological and ultrastructural studies have revealed that planarian stem cells consist of heterogeneous populations, which can be classified into several subsets according to their differential expression of RNA binding protein genes. In this study, we focused on planarian musashi family genes. Musashi encodes an evolutionarily conserved RNA binding protein known to be expressed in neural lineage cells, including neural stem cells, in many animals. Here, we investigated whether planarian musashi-like genes can be used as markers for detecting neural fate-restricted cells. Three musashi family genes, DjmlgA, DjmlgB and DjmlgC (Dugesia japonica musashi-like gene A, B, C), and Djdmlg (Dugesia japonica DAZAP-like/musashi-like gene) were obtained by searching a planarian EST database and 5′ RACE, and each was found to have two RNA recognition motifs. We analyzed the types of cells expressing DjmlgA, DjmlgB, DjmlgC and Djdmlg by in situ hybridization, RT-PCR and single-cell RT-PCR analysis. Although Djdmlg was expressed in X-ray-sensitive stem cells and various types of differentiated cells, expression of the other three musashi-like genes was restricted to neural cells, as we expected. Further detailed analyses yielded the unexpected finding that these three planarian musashi family genes were predominantly expressed in X-ray-resistant differentiated neurons, but not in X-ray-sensitive stem cells. RNAi experiments suggested that these planarian musashi family genes might be involved in neural cell differentiation after neural cell-fate commitment.  相似文献   

17.
The heat shock protein 40 (Hsp40) family of proteins act as co-chaperones of the heat shock protein 70 (Hsp70) chaperone family, and together they play a vital role in the maintenance of cellular homeostasis. The Type III class of Hsp40s are diverse in terms of both sequence identity and function and have not been extensively characterised. The Trypanosoma brucei parasite is the causative agent of Human African Trypanosomiasis, and possesses an unusually large Hsp40 complement, consisting mostly of Type III Hsp40s. A novel T. brucei Type III Hsp40, Tbj1, was heterologously expressed, purified, and found to exist as a compact monomer in solution. Using polyclonal antibodies to the full-length recombinant protein, Tbj1 was found by Western analysis to be expressed in the T. brucei bloodstream-form. Tbj1 was found to be able to assist two different Hsp70 proteins in the suppression of protein aggregation in vitro, despite being unable to stimulate their ATPase activity. This indicated that while Tbj1 did not possess independent chaperone activity, it potentially functioned as a novel co-chaperone of Hsp70 in T. brucei.  相似文献   

18.
19.
Drosophila melanogastercasein kinase II (DmCKII) is composed of catalytic α and regulatory β subunits associated as an α2β2heterotetramer. Using the two-hybrid system, we have screened aDrosophilaembryo cDNA library for proteins that interact with DmCKII α. One of the cDNAs encodes a novel β-like polypeptide, which we designate β′.In situhybridization localizes the corresponding gene to 56F1-2, a site distinct from that of both the β gene and theStellatefamily of β-like sequences. The predicted sequence of β′ is more closely related to the β subunit ofDrosophilaand other metazoans than to the Stellate family of proteins, suggesting that it is a second regulatory subunit.In vitroreconstitution studies show that a GST-β′ fusion protein associates with the α subunit to generate a tetrameric complex with regulatory properties similar to those of the native α2β2holoenzyme. The data are consistent with the proposed role of the β′ subunit as an integral component of the holoenzyme.  相似文献   

20.
The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domains have been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a G⇔A transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N-terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号