首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five chitosan oligosaccharides were separated in acidic aqueous solution by capillary electrophoresis (CE) with indirect photometric detection using a positively coated capillary. Electrophoretic mobility of the chitooligosaccharides (COSs) depended on the number of monomer units in acidic aqueous solution, similar to other polyelectrolyte oligomers. The separation was developed in nitric acid aqueous solution at pH 3.0 with 1 mM Crystal Violet, using a capillary positively coated with N-trimethoxypropyl-N,N,N-trimethylammonium chloride. The limit of the detection for chitooligosaccharides with two to six saccharide chains was less than 5 μM. CE determination of an enzymatically hydrolyzed COS agreed with results from HPLC.  相似文献   

2.
Affinity capillary electrophoresis (ACE) is a broad term referring to the separation by capillary electrophoresis of substances that participate in specific or non-specific affinity interactions during electrophoresis. The interacting molecules can be found free in solution or can be immobilized to a solid support. Every ACE mode has advantages and disadvantages. Each can be used for a wide variety of applications. This paper focuses on applications that include purification and concentration of analytes present in diluted solutions or complex matrices, quantitation of analytes based on calibration curves, and estimation of binding constants from direct and derived binding curves based on quantitation of analytes or on analyte migration shifts. A more recent chemicoaffinity strategy in capillary electrophoresis/capillary electrochromatography (CE/CEC) termed molecular imprinting (`plastic antibodies') is discussed as well. Although most ACE studies are aimed at characterizing small-molecular mass analytes such as drugs, hormones, and peptides, some efforts have been pursued to characterize larger biopolymers including proteins, such as immunoglobulins. Examples of affinity interactions that have been studied are antigen–antibody, hapten–antibody, lectin–sugar, drug–protein, and enzyme–substrate complexes using ultraviolet, laser-induced fluorescence, and mass spectrometer detectors. This paper also addresses the critical issue of background electrolyte selection and quantitation of analytes. Specific examples of bioaffinity applications are presented, and the future of ACE in the biomedical field is discussed.  相似文献   

3.
Enantiomer separations by capillary electrophoresis (CE), using proteins as chiral selectors--affinity capillary electrophoresis (ACE) with free solutions and capillary electrochromatography (CEC)--with protein immobilized capillaries, are reviewed. The separation principle, recent advances in this field and some interesting topics are presented. In ACE, various enantiomer separations have been already reported using either plasma proteins or egg white ones. Miscellaneous proteins were also explored in the last few years. On the contrary, only a limited number of enantiomer separations have been successfully achieved in CEC. CEC is not yet mature enough to date, and further investigations, such as efficiency, durability and reproducibility of capillaries, will be necessary for the use of routine analyses. The study of enantioselective drug-protein binding is important in pharmaceutical developments. Some applications including high-performance CE/frontal analysis (HPCE/FA) are introduced in this paper.  相似文献   

4.
Affinity capillary electrophoresis was used to detect a shift in mobility when a zinc ion binds to the highly basic nucleocapsid protein (NCp7) of HIV-1. NCp7 contains two Cys-X2- Cys-X4-His-X4-Cys zinc fingers. With constant concentrations of NCp7 as a receptor and various concentrations of zinc as a ligand in the sample buffer and the electrophoresis buffer, we observed changes in electrophoretic mobilities of NCp7 protein when complexes were formed with zinc. Scatchard analysis of the mobility indicates the presence of at least two types of binding sites for zinc. At pH 6.0, one site is shown to bind zinc strongly with a binding constantKb= 3.25 × 105M−1and the second site has aKb= 1.8 × 105M−1. The binding of zinc to the first zinc finger decreased the affinity of zinc for the second zinc finger approximately twofold. The Hill coefficient for this negative cooperativity is 0.9. A series of NCp7 mutants were also examined in the assay to determine their ability to bind zinc. This assay affords a quick method to observe a zinc ion binding to NCp7 and to calculate binding constants.  相似文献   

5.
The electrophoretic mobilities of three bacterial strains were investigated by capillary electrophoresis (CE) and were compared with results obtained by microelectrophoresis (ME). The CE measurements yielded bimodal electropherograms for two of the strains, thus illustrating for the first time that surface charge variations within a monoclonal population can be probed by CE. Intrapopulation variations were not detected by ME. The mobilities of three chemically distinct types of latex microspheres were also measured. Differences between the mean mobilities obtained by CE and ME were not statistically significant (P ≤ 0.50); the standard deviations of the CE measurements were typically 2 to 10 times smaller than those obtained by comparable ME measurements. The reproducibility of CE permitted batch-to-batch mobility variations to be probed for the bacteria (one of the strains exhibited such variations), and aggregation was evident in one of the latex suspensions. These effects were not measurable with ME.  相似文献   

6.
7.
Fluorescence spectroscopy in combination with UV–vis absorption spectroscopy was employed to investigate the binding of an important traditional medicinal herb berberine to bovine serum albumin (BSA) under the physiological conditions. In the mechanism discussion, it was proved that the fluorescence quenching of BSA by berberine is a result of the formation of berberine–BSA complex. Fluorescence quenching constants were determined using the Stern–Volmer equation and Scatchard equation to provide a measure of the binding affinity between berberine and BSA. The results of thermodynamic parameters ΔG, ΔH, ΔS at different temperatures indicate that the electrostatic interactions play a major role for berberine–BSA association. Site marker competitive experiments indicated that the binding of berberine to BSA primarily took place in site II. Furthermore, the Effect of supramolecules to berberine–BSA system, and the distance r between donor (BSA) and acceptor (berberine) was obtained according to fluorescence resonance energy transfer (FRET).  相似文献   

8.
Franklin Fuchs  Margaret Bayuk 《BBA》1976,440(2):448-455
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites.  相似文献   

9.
This contribution reviews work about liposomes in the context of electrically driven separation methods in the capillary format. The discussion covers four topics. The one broaches the application of liposomes as pseudo-stationary phases or carriers in vesicle or liposome electrokinetic chromatography (EKC) in the way as microemulsions and micelles are used; it includes the chromatographic use of liposomal bilayers as stationary phases attached to the wall for capillary electrochromatography (CEC). The second topic is the characterization and separation of liposomes as analytes by capillary electrophoresis (CE). Then the determination of distribution coefficients and binding constants between liposomes and ligands is discussed, and finally work dealing with peptides and proteins are reviewed with lipid bilayers as constituents of the electrically driven separation system.  相似文献   

10.
The electrophoretic mobility of proteins was successfully determined by means of capillary electrophoresis (CE) with various background electrolytes (BGEs). The objective was focused on the variation in BGE physico-chemical composition and the consequential impact on the observed protein charge. Experimental and calculated mobilities, according to Henry's equation, versus ionic strength have been compared. For positively-charged lysozyme, a good agreement between observed and calculated mobilities was observed using triethanolamine chloride at pH 7.0 as the BGE. Mobility close to zero was shown using borate (pH 8.0) and phosphate (pH 7.0) at a low ionic strength of about 20 mmol l−1, and as a consequence, specific adsorption of oxyanions was evidenced. Lysozyme retention in the case of reversed-phase high-performance liquid chromatography (RP-HPLC) was decreased by the presence of phosphate ions. CE and HPLC are complementary tools for characterizing the behaviour of lysozyme. On the other hand, the mobility of the negatively-charged α-lactalbumin remained constant as regards phosphate at pH 7.0 in the 20–200 mmol l−1 range, contrary to the decrease that had been expected with the increasing ionic strength. β-Lactoglobulin exhibited increasingly lower mobilities than those expected of boric acid/borate at pH 7.0 and 8.0 (I=20 mmol l−1).  相似文献   

11.
This review addresses the use of high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) as affinity separation methods to characterise drugs or potential drugs-bio-polymer interactions. Targets for the development of new drugs such as enzymes (IMERs), receptors, and membrane proteins were immobilized on solid supports. After the insertion in the HPLC system, these immobilized bio-polymers were used for the determination of binding constants of specific ligands, substrates and inhibitors of pharmaceutical interest, by frontal analyses and zonal elution methods. The most used bio-polymer immobilization techniques and methods for assessing the amount of active immobilized protein are reported. Examples of increased stability of immobilized enzymes with reduced amount of used protein were shown and the advantages in terms of recovery for reuse, reproducibility and on-line high-throughput screening for potential ligands are evidenced. Dealing with the acquisition of relevant pharmacokinetic data, examples concerning human serum albumin binding studies are reviewed. In particular, papers are reported in which the serum carrier has been studied to monitor the enantioselective binding of chiral drugs and the mutual interaction between co-administered drugs by CE and HPLC. Finally CE, as merging techniques with very promising and interesting application of microscale analysis of drugs' binding parameters to immobilized bio-polymers is examined.  相似文献   

12.
A simple and convenient method has been developed for evaluation binding capacity of lipophilic ligands with lipoproteins or other transport proteins. For this purpose cellulose discs (Whatman 3 MM) were loaded with the constant quantity of 3H-benzopyrene and increasing amounts of unlabelled benzo[a]pyrene in dimethylsulfoxide, dried up and incubated in solution of lipoproteins. Dissociation constants were deduced from the remained disk radioactivity using the Scatchard plot method. The obtained values of the dissociation constants were: HDL--4.1 x 10(-5) M; LDL--1.5 x 10(-6) M; VLDL--8.8 x 10(-6) M.  相似文献   

13.
This paper describes sample enrichment in a single levitated droplet for capillary electrophoresis (CE) analysis. The droplet was trapped in an acoustical field. The minute sample volumes needed for the enrichment procedure were precisely handled using a piezoelectric flow-through liquid microdispenser. Droplets with a volume of 65 pl were ejected from the device at a repetition rate ranging from one single droplet up to several hundreds per second. By counting the number of droplets ejected and accumulated in the levitated drop the sample volume was controlled. Through solvent evaporation the analytes were enriched in the diminishing droplet. The droplet was then injected into a CE capillary and the analytes, dansyl-Gly and dansyl-Val dissolved in ethanol, were separated in a 100 mM borate buffer (pH 9.0) utilising UV-absorption detection at 200 nm near the capillary outlet. Enrichment of 36 000 sample droplets (2.3 μl) through solvent evaporation in the levitated drop resulted in a concentration limit of detection (CLOD) of 15 nM for the dansylated amino acids as compared to a CLOD of 2.5 μM which was achieved using standard hydrodynamic injection without preconcentration.  相似文献   

14.
We have investigated free-solution capillary electrophoresis (FSCE) and micellar electrokinetic capillary chromatography (MECC) separations of metallothionein (MT) isoforms conducted in uncoated and surface-modified fused-silica capillaries. At alkaline pH, FSCE rapidly resolves isoforms belonging to the MT-1 and MT-2 charge classes. At acidic pH, additional resolution of MT isoforms is achieved. The use of high-ionic-strength (0.5 M) phosphate buffers can result in high peak efficiencies and increased resolution for some MT isoforms. Interior capillary surface coatings such as polyamine and linear polyacrylamide polymers permit separation of MT isoforms with enhanced resolution through their effects on electroosmotic flow (EOF) and protein-wall interactions. Improvements in MT isoform resolution can also be achieved by MECC using 100 mM borate buffer pH 8.4 containing 75 mM SDS. Deproteinization of tissue cytosol samples with acetonitrile (60–80%) or perchloric acid (7%) produces extracts that can be subjected to direct analysis of MT by FSCE or MECC. We conclude that optimal separation of MT isoforms by capillary electrophoresis (CE) can be achieved with the appropriate combination of different capillaries, buffers and sample preparation techniques.  相似文献   

15.
The combination of ultrafiltration and difference spectroscopy allows the quantitative determination of spectra of thionine bound to heparin. The spectra of the bound dye do not depend on the degree of coverage; this and the shape of the Scatchard plot show that “all-or-none” binding is valid. A calculus of variations based on a modification of the Hill plot shows that aggregates of seven thionine cations are bound. Tetrasaccharides with an average charge of two carboxylate and five sulfate groups are suggested to be the binding sites. The binding constant given for one mole thionine is 4.4 · 105 M?1. The Gibbs enthalpy for binding of one mole of thionine is ?31.7 kJ·M?1 at 20°C.  相似文献   

16.
Alternative conformations of β2-microglobulin (β2m) are involved in its transformation from soluble monomeric precursor molecules to the insoluble polymeric material that constitutes β2m amyloid. Accordingly, non-native conditions such as low pH or high ionic strength promote β2m amyloid formation in vitro. The early events in these processes are not well known, partly because of the paucity of techniques available for the characterization of transient folding intermediates in proteins. We have used high-resolution separations in capillaries (capillary electrophoresis, CE) to resolve putative conformer fractions in native and structurally modified β2m and to show the induction of alternatively folded β2m under different experimental conditions. The conformer fractions are observed as distinct peaks in the separation profiles and thus it is possible to probe for the reactivity of these individual β2m species with specific ligands that, upon binding, alter analyte mobility in affinity capillary electrophoresis experiments. Interactions were shown in this way for the negatively charged substances heparin, Congo red, and suramin, as well as for Cu2+ ions. Marked differences in the binding behavior of the β2m conformational variants compared with native β2m could be demonstrated. This approach for conformer separation and binding characterization is a valuable starting point for the assessment of various ligand molecules, or analogues thereof, as agents capable of perturbing the mechanisms of fibril formation.  相似文献   

17.
A capillary electrophoresis (CE) method for the quantification of R-(−)- and S-(+)-prilocaine in human serum was developed and validated. Stereoselective resolution was accomplished using 15 mM heptakis(2,6-di-methyl)-β-cyclodextrin and 0.03 mM hexadecyltrimethylammonium bromide (HTAB) contained in 100 mM phosphate buffer, pH 2.5. Solid-phase extraction was used as a sample preparation technique to remove endogenous interferences. A 72-cm uncoated fused-silica capillary at a voltage of 25 kV and 30°C was used for the analysis. The detection limits for R-(−)- and S-(+)-prilocaine were 38 ng/ml using 1 ml of human serum and the limits of quantitation were 45 ng/ml. The calibration curve was linear over the range of 45–750 ng/ml with procainamide as the internal standard. Precision and accuracy of the method were 2.86–8.50% and 3.29–7.40%, respectively, for R-(−)-prilocaine, and 3.94–9.17% and 2.0–6.73%, respectively, for S-(+)-prilocaine. The CE method was compared to an existing chiral HPLC method in terms of sensitivity and selectivity for the routine analysis of the drug.  相似文献   

18.
The methyl-CpG binding domain (MBD) family of proteins was defined based on sequence similarity in their DNA binding domains. In light of their high degree of conservation, it is of inherent interest to determine the genomic distribution of these proteins, and their associated co-repressor complexes. One potential determinant of specificity resides in differences in the intrinsic DNA binding properties of the various MBD proteins. In this report, we use a capillary electrophoretic mobility shift assay (CEMSA) with laser-induced fluorescence (LIF) and neutral capillaries to calculate MBD–DNA binding affinities. MBD proteins were assayed on pairs of methylated and unmethylated duplex oligos corresponding to the promoter regions of the BRCA1, MLH1, GSTP1 and p16INK4a genes, and binding affinities for each case were calculated by Scatchard analyses. With the exception of mammalian MBD3 and Xenopus MBD3 LF, all the MBD proteins showed higher affinity for methylated DNA (in the nanomolar range) than for unmethylated DNA (in the micromolar range). Significant differences between MBD proteins in the affinity for methylated DNA were observed, ranging within two orders of magnitude. By mutational analysis of MBD3 and using CEMSA, we demonstrate the critical role of specific residues within the MBD in conferring selectivity for methylated DNA. Interestingly, the binding affinity of specific MBD proteins for methylated DNA fragments from naturally occurring sequences are affected by local methyl-CpG spacing.  相似文献   

19.
Laser-induced native fluorescence detection with a KrF excimer laser (λ=248 nm) was used to investigate the capillary electrophoretic (CE) profiles of human urine, saliva and serum without the need for sample derivatization. All separations were carried out in sodium phosphate and/or sodium tetraborate buffers at alkaline pH in a 50-μm I.D. capillary. Sodium dodecyl sulfate was added to the buffer for micellar electrokinetic chromatography (MEKC) analysis of human urine. Although inherently a pulsed source, the KrF excimer laser was operated at a high pulse repetition rate of 553, 1001 or 2009 Hz to simulate a continuous wave excitation source. Detection limits were found to vary with pulse rate, as expected, in proportion to average excitation power. The following detection limits (3σ) were determined in free solution CE: tryptophan, 4 nM; conalbumin, 10 nM; α-lactalbumin, 30 nM. Detection limits for indole-based compounds and catecholamine urinary metabolites under MEKC separation conditions were in the range 7–170 nM.  相似文献   

20.
Molecular recognition may be characterized both qualitatively and quantitatively by electrophoretic methods if complexed molecules differ in electrophoretic mobility from unbound ones. The use of capillary zone electrophoresis (CE) for the characterization of affinity interactions is advantageous because of the high resolution, reproducibility and wide applicability of the technique and because of the mild conditions, i.e., physiological buffers without additions of organics or detergents, that are often sufficient for highly efficient separations. CE gives the ability to characterize binding between small amounts of unlabelled reactants in solution, has few requirements for special characteristics of the interacting molecules and is also applicable to the study of interactions of individual components in mixtures, as detection of binding and analytical separation are achieved in one step. This is unique compared with other techniques for the study of non-covalent interactions. The advantages and disadvantages of using CE to demonstrate molecular interactions, to screen for specific ligand binding in complex mixtures and to calculate binding constants will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号