首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential Regulation of Multiple Flagellins in Vibrio cholerae   总被引:4,自引:0,他引:4       下载免费PDF全文
Vibrio cholerae, the causative agent of the human diarrheal disease cholera, is a motile bacterium with a single polar flagellum. Motility has been implicated as a virulence determinant in some animal models of cholera, but the relationship between motility and virulence has not yet been clearly defined. We have begun to define the regulatory circuitry controlling motility. We have identified five V. cholerae flagellin genes, arranged in two chromosomal loci, flaAC and flaEDB; all five genes have their own promoters. The predicted gene products have a high degree of homology to each other. A strain containing a single mutation in flaA is nonmotile and lacks a flagellum, while strains containing multiple mutations in the other four flagellin genes, including a flaCEDB strain, remain motile. Measurement of fla promoter-lacZ fusions reveals that all five flagellin promoters are transcribed at high levels in both wild-type and flaA strains. Measurement of the flagellin promoter-lacZ fusions in Salmonella typhimurium indicates that the promoter for flaA is transcribed by the ς54 holoenzyme form of RNA polymerase while the flaE, flaD, and flaB promoters are transcribed by the ς28 holoenzyme. These results reveal that the V. cholerae flagellum is a complex structure with multiple flagellin subunits including FlaA, which is essential for flagellar synthesis and is differentially regulated from the other flagellins.  相似文献   

2.
A screen for inhibitors of Vibrio cholerae motility identified the compound 3-amino 1,8-naphthalimide (3-A18NI), a structural analog of the cholera drug virstatin. Similar to virstatin, 3-A18NI diminished cholera toxin production. In contrast, 3-A18NI impeded swimming and/or swarming motility of V. cholerae and V. parahemolyticus suggesting that it could target the chemotaxis pathway shared by the polar and lateral flagellar system of vibrios. 3-A18NI did not inhibit the expression of V. cholerae major flagellin FlaA or the assembly of its polar flagellum. Finally, 3-A18NI enhanced V. cholerae colonization mimicking the phenotype of chemotaxis mutants that exhibit counterclockwise-biased flagellum rotation.  相似文献   

3.
4.
5.
6.
Filamentous phages have distinguished roles in conferring many pathogenicity and survival related features to Gram-negative bacteria including the medically important Vibrio cholerae, which carries factors such as cholera toxin on phages. A novel filamentous phage, designated VFJΦ, was isolated in this study from an ampicillin and kanamycin-resistant O139 serogroup V. cholerae strain ICDC-4470. The genome of VFJΦ is 8555 nucleotides long, including 12 predicted open reading frames (ORFs), which are organized in a modular structure. VFJΦ was found to be a mosaic of two groups of V. cholerae phages. A large part of the genome is highly similar to that of the fs2 phage, and the remaining 700 bp is homologous to VEJ and VCYΦ. This 700 bp region gave VFJΦ several characteristics that are not found in fs2 and other filamentous phages. In its native host ICDC-4470 and newly-infected strain N16961, VFJΦ was found to exist as a plasmid but did not integrate into the host chromosome. It showed a relatively wide host range but did not infect the classical biotype O1 V. cholerae strains. After infection, the host strains exhibited obvious inhibition of both growth and flagellum formation and had acquired a low level of ampicillin resistance and a high level of kanamycin resistance. The antibiotic resistances were not directly conferred to the hosts by phage-encoded genes and were not related to penicillinase. The discovery of VFJΦ updates our understanding of filamentous phages as well as the evolution and classification of V. cholerae filamentous phage, and the study provides new information on the interaction between phages and their host bacteria.  相似文献   

7.
Bacterial flagella play an essential role in the pathogenesis of numerous enteric pathogens. The flagellum is required for motility, colonization, and in some instances, for the secretion of effector proteins. In contrast to the intensively studied flagella of Escherichia coli and Salmonella typhimurium, the flagella of Campylobacter jejuni, Helicobacter pylori and Vibrio cholerae are less well characterized and composed of multiple flagellin subunits. This study was performed to gain a better understanding of flagellin export from the flagellar type III secretion apparatus of C. jejuni. The flagellar filament of C. jejuni is comprised of two flagellins termed FlaA and FlaB. We demonstrate that the amino‐termini of FlaA and FlaB determine the length of the flagellum and motility of C. jejuni. We also demonstrate that protein‐specific residues in the amino‐terminus of FlaA and FlaB dictate export efficiency from the flagellar type III secretion system (T3SS) of Yersinia enterocolitica. These findings demonstrate that key residues within the amino‐termini of two nearly identical proteins influence protein export efficiency, and that the mechanism governing the efficiency of protein export is conserved among two pathogens belonging to distinct bacterial classes. These findings are of additional interest because C. jejuni utilizes the flagellum to export virulence proteins.  相似文献   

8.
Active transport across the outer membrane in gram-negative bacteria requires the energy that is generated by the proton motive force in the inner membrane. This energy is transduced to the outer membrane by the TonB protein in complex with the proteins ExbB and ExbD. In the pathogen Vibrio anguillarum we have identified two TonB systems, TonB1 and TonB2, the latter is used for ferric-anguibactin transport and is transcribed as part of an operon that consists of orf2, exbB2, exbD2, and tonB2. This cluster was identified by a polar transposon insertion in orf2 that resulted in a strain deficient for ferric-anguibactin transport. Only the entire cluster (orf2, exbB2, exbD2 and tonB2) could complement for ferric-anguibactin transport, while just the exbB2, exbD2, and tonB2 genes were unable to restore transport. This suggests an essential role for this Orf2, designated TtpC, in TonB2-mediated transport in V. anguillarum. A similar gene cluster exists in V. cholerae, i.e., with the homologues of ttpC-exbB2-exbD2-tonB2, and we demonstrate that TtpC from V. cholerae also plays a role in the TonB2-mediated transport of enterobactin in this human pathogen. Furthermore, we also show that in V. anguillarum the TtpC protein is found as part of a complex that might also contain the TonB2, ExbB2, and ExbD2 proteins. This novel component of the TonB2 system found in V. anguillarum and V. cholerae is perhaps a general feature in bacteria harboring the Vibrio-like TonB2 system.  相似文献   

9.
A new gene, mutK, of Vibrio cholerae, encoding a 19-kDa protein which is involved in repairing mismatches in DNA via a presumably methyl-independent pathway, has been identified. The product of the mutK gene cloned in either high- or low-copy-number vectors can reduce the spontaneous mutation frequency of Escherichia coli mutS, mutL, mutU, and dam mutants. The spontaneous mutation frequency of a chromosomal mutK knockout mutant was almost identical to that of wild-type V. cholerae cells, indicating that when the methyl-directed mismatch repair is blocked, the repair potential of MutK becomes apparent. The complete nucleotide sequence of the mutK gene has been determined, and the deduced amino acid sequence showed three open reading frames (ORFs), of which the ORF3 represents the mutK gene product. The mutK gene product has no significant homology with any of the proteins deposited in the EMBL data bank. ORF2, located upstream of mutK, encodes a 14-kDa protein which has more than 70% homology with a hypothetical protein found only downstream of the E. coli vsr gene. ORF1, located farther upstream of mutK, has more than 80% homology with a major cold shock protein found in several bacteria. Downstream of mutK, a partial ORF having 60% homology with an RNA methyltransferase has been identified. The mutK gene has recently been positioned in the ordered cloned DNA map of the genome of the V. cholerae strain from which the gene was isolated (10).  相似文献   

10.
Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute “cell motility” category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ28. The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13–4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.  相似文献   

11.
Cholera remains a heavy burden to human health in some developing countries including India where sanitation is poor and health care is limited. After the publication of the complete genome sequence of Vibrio cholerae, the etiological agent of cholera, extensive possibilities, earlier unavailable, have opened up to understand the genetic organization of V. cholerae. In the present study, we analyzed all the pathogenic non-horizontally transferred genes of V. cholerae to know the ancestral relationship and how the pathogenic genes have been evolved in V. cholerae genome. We observed that protein domain has important role in developing pathogenicity, and codon usage pattern of the pathogenic protein domain is also subject to selection. The present study unambiguously depict that the patterns of synonymous codon usage within a protein domain can change dramatically during the course of evolution to give rise to pathogenicity.  相似文献   

12.
13.
Vibrio cholerae is known to persist in aquatic environments under nutrient-limiting conditions. To analyze the possible involvement of the alternative sigma factor encoded by rpoS, which is shown to be important for survival during nutrient deprivation in several other bacterial species, a V. cholerae rpoS homolog was cloned by functional complementation of an Escherichia coli mutant by using a wild-type genomic library. Sequence analysis of the complementing clone revealed an 1.008-bp open reading frame which is predicted to encode a 336-amino-acid protein with 71 to 63% overall identity to other reported rpoS gene products. To determine the functional role of rpoS in V. cholerae, we inactivated rpoS by homologous recombination. V. cholerae strains lacking rpoS are impaired in the ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and carbon starvation. These results suggest that rpoS may be required for the persistence of V. cholerae in aquatic habitats. In addition, the rpoS mutation led to reduced production or secretion of hemagglutinin/protease. However, rpoS is not critical for in vivo survival, as determined by an infant mouse intestinal competition assay.  相似文献   

14.
Vibrio cholerae is motile by its polar flagellum, which is driven by a Na+-conducting motor. The stators of the motor, composed of four PomA and two PomB subunits, provide access for Na+ to the torque-generating unit of the motor. To characterize the Na+ pathway formed by the PomAB complex, we studied the influence of chloride salts (chaotropic, Na+, and K+) and pH on the motility of V. cholerae. Motility decreased at elevated pH but increased if a chaotropic chloride salt was added, which rules out a direct Na+ and H+ competition in the process of binding to the conserved PomB D23 residue. Cells expressing the PomB S26A/T or D42N variants lost motility at low Na+ concentrations but regained motility in the presence of 170 mM chloride. Both PomA and PomB were modified by N,N′-dicyclohexylcarbodiimide (DCCD), indicating the presence of protonated carboxyl groups in the hydrophobic regions of the two proteins. Na+ did not protect PomA and PomB from this modification. Our study shows that both osmolality and pH have an influence on the function of the flagellum from V. cholerae. We propose that D23, S26, and D42 of PomB are part of an ion-conducting pathway formed by the PomAB stator complex.  相似文献   

15.
16.
17.
18.
19.
Vibrio cholerae, a natural inhabitant of the marine environment, poses a threat to human health, and its new epidemic variants have been reported. A method of multiplex polymerase chain reaction–capillary electrophoresis–laser-induced fluorescence (PCR–CE–LIF) detection has been developed to detect and identify V. cholerae in marine products sensitively, rapidly, and reliably. Four sets of primers were selected to amplify genus-specific VCC gene, O139 serogroup-specific O139 gene, O1 serogroup-specific O1 gene, and ctxA gene associated with the CT toxin of enterotoxigenic V. cholerae. The PCR products were detected using CE–LIF with SYBR Gold serving as the DNA fluorescent dye. The parameters of PCR and the separation conditions of CE–LIF were optimized. Under the optimal conditions, V. cholerae was detected and four serotypes were identified simultaneously within 8 min. The alignment analysis showed that the PCR products had good agreement with the published sequences from GenBank, indicating that the primers selected in this study had high specificity and the PCR results were reliable. The proposed method could detect 5 to 20 cfu/ml V. cholerae. The intraday precisions of migration time and peak area of DNA marker and PCR products were in the ranges of 1.60–2.56% and 1.60–6.29%, respectively. The specificity results showed that only five standard bacteria used in this study showed the specific peaks when the target bacteria were mixed with seven other common intestinal pathogenic bacteria at the same concentration. The assay was applied to 71 high-risk marine products, and different serotypes of V. cholerae could be identified sensitively and reliably.  相似文献   

20.
A species-specific RNA colony blot hybridization protocol was developed for enumeration of culturable Vibrio cholerae and Vibrio mimicus bacteria in environmental water samples. Bacterial colonies on selective or nonselective plates were lysed by sodium dodecyl sulfate, and the lysates were immobilized on nylon membranes. A fluorescently labeled oligonucleotide probe targeting a phylogenetic signature sequence of 16S rRNA of V. cholerae and V. mimicus was hybridized to rRNA molecules immobilized on the nylon colony lift blots. The protocol produced strong positive signals for all colonies of the 15 diverse V. cholerae-V. mimicus strains tested, indicating 100% sensitivity of the probe for the targeted species. For visible colonies of 10 nontarget species, the specificity of the probe was calculated to be 90% because of a weak positive signal produced by Grimontia (Vibrio) hollisae, a marine bacterium. When both the sensitivity and specificity of the assay were evaluated using lake water samples amended with a bioluminescent V. cholerae strain, no false-negative or false-positive results were found, indicating 100% sensitivity and specificity for culturable bacterial populations in freshwater samples when G. hollisae was not present. When the protocol was applied to laboratory microcosms containing V. cholerae attached to live copepods, copepods were found to carry approximately 10,000 to 50,000 CFU of V. cholerae per copepod. The protocol was also used to analyze pond water samples collected in an area of cholera endemicity in Bangladesh over a 9-month period. Water samples collected from six ponds demonstrated a peak in abundance of total culturable V. cholerae bacteria 1 to 2 months prior to observed increases in pathogenic V. cholerae and in clinical cases recorded by the area health clinic. The method provides a highly specific and sensitive tool for monitoring the dynamics of V. cholerae in the environment. The RNA blot hybridization protocol can also be applied to detection of other gram-negative bacteria for taxon-specific enumeration.Vibrio cholerae is autochthonous to the aquatic environment, but some strains produce enterotoxins and are capable of causing epidemics of the human disease cholera. Strains of V. cholerae are classified by their O antigen, with over 210 serogroups recognized to date. Seven cholera pandemics have occurred since 1832: while microbiologic data on the earlier pandemics are not available, the last two are known to have been caused by strains within serogroup O1, with the major pathogenic factor being production of cholera toxin. The genes encoding cholera toxin and other pathogenic factors have been shown to reside in a mobile genetic element of phage origin, designated CTXΦ (20).Standard microbiologic methods for isolation of V. cholerae present in natural waters rely primarily on a method originally developed for clinical diagnosis, namely, enrichment in alkaline peptone water, followed by subculture on selective media and confirmation using selected biochemical and immunological tests (7). The alkaline nature of the enrichment broth allows differential multiplication of Vibrio species but renders this method inappropriate for enumeration. PCR methods and oligonucleotide hybridization have been used to detect and enumerate toxigenic V. cholerae bacteria (3, 11, 12, 14, 15, 21). These methods typically rely on amplification of or hybridization to pathogenic markers, such as O1/O139 wbe, tcpA, and ctxA DNA sequences.However, occasional localized outbreaks of cholera have been caused by non-O1, non-O139 V. cholerae, which may be toxigenic or nontoxigenic. Conversely, many environmental V. cholerae O1 strains isolated from areas of endemicity do not harbor ctx genes (9). It has also been shown that CTXΦ is capable of lysogenic conversion of strains that are CTXΦ negative (20). Additionally, the cholera toxin (CTX) prophage has also been detected in clinical strains of V. mimicus, and V. mimicus has been proposed as a natural reservoir for CTXΦ (2). Furthermore, ecological studies of V. cholerae are often hampered by the fact that toxigenic strains represent only a small percentage of the total V. cholerae population in the environment, especially in areas where cholera is not endemic. These facts underline the need for a method of detection of the total number of V. cholerae bacteria present in environmental samples.The many copies of 16S rRNA molecules in each V. cholerae cell offer appropriate targets for species-specific enumeration. In this study, the probe Vchomim1276, previously described by Heidelberg et al. (4-6), was employed in an RNA colony blot hybridization protocol. The specificity and sensitivity of the probe were tested using type strains and environmental and clinical isolates. The method was evaluated using laboratory microcosms to which cells of V. cholerae were added, and the protocol was used to enumerate V. cholerae bacteria in samples collected from ponds in a region of cholera endemicity in Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号