首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have reported the isolation of highly mucoid serotype 3 Streptococcus pneumoniae (Sp) from the respiratory tracts of children with cystic fibrosis (CF). Whether these highly mucoid Sp contribute to, or are associated with, respiratory failure among patients with CF remains unknown. Other mucoid bacteria, predominately Pseudomonas aeruginosa, are associated with CF respiratory decline. We used a mouse model of CF to study pneumococcal pneumonia with highly mucoid serotype 3 and non-mucoid serotype 19A Sp isolates. We investigated susceptibility to infection, survival, and bacterial counts from bronchoaviolar lavage samples and lung homogenates, as well as associated inflammatory cytokines at the site of infection, and lung pathology. Congenic CFTR–/– mice and wild-type (WT)-mice were infected intranasally with CHB756, CHB1126, and WU2 (highly mucoid capsular serotype 3, intermediately mucoid serotype 3, and less mucoid serotype 3, respectively), or CHB1058 (non-mucoid serotype 19A). BAL, lung homogenates, and blood were collected from mice 5 days post-infection. Higher CFU recovery and shorter survival were observed following infection of CFTR–/– mice with CHB756 compared to infection with CHB1126, WU2, or CHB1058 (P≤0.001). Additionally, CFTR–/– mice infected with CHB756 and CHB1126 were more susceptible to infection than WT-mice (P≤0.05). Between CFTR–/– mice and WT-mice, no significant differences in TNF-α, CXCL1/KC concentrations, or lung histopathology were observed. Our results indicate that highly mucoid type 3 Sp causes more severe lung disease than non-mucoid Sp, and does so more readily in the lungs of CFTR–/– than WT-mice.  相似文献   

2.
3.
Because standard techniques used to detect mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene do not detect single or multiple exonic rearrangements, the importance of such rearrangements may be underestimated. Using an in-house developed, single-tube, semi-quantitative fluorescent PCR (SQF PCR) assay, we analyzed 36 DNA samples submitted for extensive CFTR sequencing and identified ten samples with rearrangements. Of 36 patients with classic CF, 10 (28%) harbored various deletions in the CFTR gene, accounting for 14% of CF chromosomes. A deletion encompassing the CFTR promoter and exons 1 and 2 was detected in a sample from one proband, and in the maternal DNA as well. In another family, a deletion of the promoter and exon 1 was detected in three siblings. In both of these cases, the families were African American and the 3120+1G>A splice site mutation was also identified. These promoter deletions have not been previously described. In a third case, a deletion of exons 17a, 17b, and 18 was identified in a Caucasian female and the same mutation was detected in the paternal DNA. In the other seven cases, we identified the following deletions: exons 2 and 3 (n=2); exons 4, 5, and 6a; exons 17a and 17b; exons 22 and 23; and exons 22, 23, and 24 (n=2). In our series, the frequency of CFTR rearrangements in classic CF patients, when only one mutation was identified by extensive DNA sequencing, was >60% (10/16). Screening for exon deletions and duplications in the CFTR gene would be beneficial in classic CF cases, especially when only one mutation is identified by standard methodologies. An erratum to this article can be found at  相似文献   

4.
Recent advances in our understanding of translational dynamics indicate that codon usage and mRNA secondary structure influence translation and protein folding. The most frequent cause of cystic fibrosis (CF) is the deletion of three nucleotides (CTT) from the cystic fibrosis transmembrane conductance regulator (CFTR) gene that includes the last cytosine (C) of isoleucine 507 (Ile507ATC) and the two thymidines (T) of phenylalanine 508 (Phe508TTT) codons. The consequences of the deletion are the loss of phenylalanine at the 508 position of the CFTR protein (ΔF508), a synonymous codon change for isoleucine 507 (Ile507ATT), and protein misfolding. Here we demonstrate that the ΔF508 mutation alters the secondary structure of the CFTR mRNA. Molecular modeling predicts and RNase assays support the presence of two enlarged single stranded loops in the ΔF508 CFTR mRNA in the vicinity of the mutation. The consequence of ΔF508 CFTR mRNA “misfolding” is decreased translational rate. A synonymous single nucleotide variant of the ΔF508 CFTR (Ile507ATC), that could exist naturally if Phe-508 was encoded by TTC, has wild type-like mRNA structure, and enhanced expression levels when compared with native ΔF508 CFTR. Because CFTR folding is predominantly cotranslational, changes in translational dynamics may promote ΔF508 CFTR misfolding. Therefore, we propose that mRNA “misfolding” contributes to ΔF508 CFTR protein misfolding and consequently to the severity of the human ΔF508 phenotype. Our studies suggest that in addition to modifier genes, SNPs may also contribute to the differences observed in the symptoms of various ΔF508 homozygous CF patients.  相似文献   

5.

Background

Cystic Fibrosis (CF) is the most prevalent autosomal recessive disease in the Caucasian population. A cystic fibrosis transmembrane conductance regulator knockout (CFTR-/-) pig that displays most of the features of the human CF disease has been recently developed. However, CFTR -/- pigs presents a 100% prevalence of meconium ileus that leads to death in the first hours after birth, requiring a rapid diagnosis and surgical intervention to relieve intestinal obstruction. Identification of CFTR -/- piglets is usually performed by PCR genotyping, a procedure that lasts between 4 to 6 h. Here, we aimed to develop a procedure for rapid identification of CFTR -/- piglets that will allow placing them under intensive care soon after birth and immediately proceeding with the surgical correction.

Methods and Principal Findings

Male and female CFTR +/- pigs were crossed and the progeny was examined by computed tomography (CT) scan to detect the presence of meconium ileus and facilitate a rapid post-natal surgical intervention. Genotype was confirmed by PCR. CT scan presented a 94.4% sensitivity to diagnose CFTR -/- piglets. Diagnosis by CT scan reduced the birth-to-surgery time from a minimum of 10 h down to a minimum of 2.5 h and increased the survival of CFTR -/- piglets to a maximum of 13 days post-surgery as opposed to just 66 h after later surgery.

Conclusion

CT scan imaging of meconium ileus is an accurate method for rapid identification of CFTR -/- piglets. Early CT detection of meconium ileus may help to extend the lifespan of CFTR -/- piglets and, thus, improve experimental research on CF, still an incurable disease.  相似文献   

6.

Background

Although cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the severity of disease is highly variable indicating the influence of modifier genes. The intestines of Cftr deficient mice (CF mice: Cftr tm1Unc ) are prone to obstruction by excessive mucus accumulation and are used as a model of meconium ileus and distal intestinal obstruction syndrome. This phenotype is strongly dependent on the genetic background of the mice. On the C57Bl/6 background, the majority of CF mice cannot survive on solid mouse chow, have inflammation of the small intestine, and are about 30% smaller than wild type littermates. In this work potential modifier loci of the CF intestinal phenotype were identified.

Results

CF mice on a mixed genetic background (95% C57Bl/6 and 5% 129Sv) were compared to CF mice congenic on the C57Bl/6 background for several parameters of the intestinal CF phenotype. CF mice on the mixed background exhibit significantly greater survival when fed dry mouse chow, have reduced intestinal inflammation as measured by quantitative RT-PCR for marker genes, have near normal body weight gain, and have reduced mucus accumulation in the intestinal crypts. There was an indication of a gender effect for body weight gain: males did not show a significant improvement at 4 weeks of age, but were of normal weight at 8 weeks, while females showed improvement at both 4 and 8 weeks. By a preliminary genome-wide PCR allele scanning, three regions were found to be potentially associated with the milder phenotype. One on chr.1, defined by marker D1Mit36, one on chr. 9 defined by marker D9Mit90, and one on chr. 10, defined by marker D10Mit14.

Conclusion

Potential modifier regions were found that have a positive impact on the inflammatory phenotype of the CF mouse small intestine and animal survival. Identification of polymorphisms in specific genes in these regions should provide important new information about genetic modifiers of the CF intestinal phenotype.  相似文献   

7.
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.  相似文献   

8.

Introduction

In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF). CFTR mutations (F508del is the most common) lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age.

Methods

Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure.

Results

Patients were classified by two different criteria: 1) presence/absence of F508del mutation; 2) disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme) were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum) were reduced.

Conclusions

This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a ‘systemic disease’, linking the lung and the gut in a joined axis.  相似文献   

9.
10.

Background

Cystic fibrosis (CF) mice, created with a genetically engineered mutation in the Cystic fibrosis transmembrane conductance regulator (Cftr) gene, may develop intestinal plugs which limit their survival past weaning. In a studied population of genetically mixed CF mice differences in allelic ratios at particular loci, between surviving CF mice and mice with the lethal intestinal defect, were used to map cystic fibrosis modifier gene one, Cfm1. Using this approach, we previously identified an X chromosome locus which may influence the survival to weaning of C57BL/6J × BALB/cJ F2 CF mice. We also detected two regions of transmission ratio distortion, independent of Cftr genotype, in a limited dataset. To investigate these findings, in this study we have genotyped 1208 three-week old F2 mice, and 186 day E15.5 embryos, derived from a congenic (C57BL/6J × BALB/cJ) F1 Cftr +/- intercross, for the putative distortion regions.

Results

An excess of homozygous BALB genotypes, compared to Mendelian expectations, was detected on chromosomes 5 (p = 5.7 × 10-15) and X (p = 3.0 × 10-35) in three-week old female mice but transmission ratio distortion was not evident in the tested region of chromosome 3 (p = 0.39). Significant pre-weaning lethality of CF mice occurred as 11.3% (137/1208) of the three-week old offspring were identified as CF mice. X chromosome genotypes were not, however, distorted in the female CF mice (p = 0.62), thus the significant non-Mendelian inheritance of this locus was dependent on CF status. The survival of CF embryos to day E15.5 was consistent with Mendelian expectations (42/186 = 23%), demonstrating the loss of CF mice to have occurred between E15.5 and three weeks of age. The excess of X chromosome homozygous BALB genotypes was recorded in female embryos (p = 0.0048), including CF embryos, indicating the distortion to be evident at this age.

Conclusion

Two of three previously suggested loci of transmission ratio distortion were replicated as distorted in this mouse cross. The non-Mendelian inheritance of X chromosome genotypes implicates this region in the survival to weaning of non-CF mice.  相似文献   

11.
12.
A mouse homozygous for the spontaneous mutation uncovered (Uncv) has a hairless phenotype. A 309-bp non-frameshift deletion mutation in the N-terminal cytoplasmic domain of iRhom2 was identified in Uncv mice (iRhom2Uncv) using target region sequencing. The detailed molecular basis for how the iRhom2 mutation causes the hairless phenotype observed in the homozygous iRhom2Uncv mouse remains unknown. To identify differentially expressed proteins in the skin of wild-type and homozygous iRhom2Uncv littermates at postnatal day 5, proteomic approaches, including two-dimensional gel electrophoresis and mass spectrometry were used. Twelve proteins were differentially expressed in the skin in a comparison between wild-type and homozygous iRhom2Uncv mice. A selection of the proteomic results were tested and verified using qRT-PCR, western blot and immunohistochemistry. These data indicate that differentially expressed proteins, especially KRT73, MEMO1 and Coro-1, might participate in the mechanism by which iRhom2 regulates the development of murine skin. [BMB Reports 2015; 48(1): 19-24]  相似文献   

13.
14.
Mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) are an established risk factor for cystic fibrosis (CF) and chronic pancreatitis. Whereas patients with CF usually develop complete exocrine pancreatic insufficiency, pancreatitis patients with CFTR mutations have mostly preserved exocrine pancreatic function. We therefore used a strain of transgenic mice with significant residual CFTR function (CFTRtm1HGU) to induce pancreatitis experimentally by serial caerulein injections. Protease activation and necrosis were investigated in isolated acini, disease severity over 24h, pancreatic function by MRI, isolated duct stimulation and faecal chymotrypsin, and leucocyte function by ex vivo lipopolysaccharide (LPS) stimulation. Pancreatic and lung injury were more severe in CFTRtm1HGU but intrapancreatic trypsin and serum enzyme activities higher than in wild-type controls only at 8h, a time interval previously attributed to leucocyte infiltration. CCK-induced trypsin activation and necrosis in acini from CFTRtm1HGU did not differ from controls. Fluid and bicarbonate secretion were greatly impaired, whereas faecal chymotrypsin remained unchanged. LPS stimulation of splenocytes from CFTRtm1HGU resulted in increased INF-γ and IL-6, but decreased IL-10 secretion. CFTR mutations that preserve residual pancreatic function significantly increase the severity of experimental pancreatitis—mostly via impairing duct cell function and a shift towards a pro-inflammatory phenotype, not by rendering acinar cells more susceptible to pathological stimuli.  相似文献   

15.
In European populations, large rearrangements contribute to approximately 2% of CF mutations. Here, we reported a novel duplication, the CFTRdup2, identified in a patient heterozygous for Phe508del and suffering from a mild CF. Using a combination of functional tests, we studied the impact of duplication/deletion on CFTR expression. We showed that the copy number variations of exon 2, in addition to abolishing the rate of the mature CFTR protein, affect the CFTR mRNA levels. These data illustrate the importance to perform functional analysis to better understand the molecular basis responsible for cystic fibrosis. Determining the impact of deletions or duplications is relevant for a more comprehensive diagnosis and prognosis of patients.  相似文献   

16.
Zygote arrest 1 (Zar1) is an oocyte-specific maternal-effect gene. Previous studies indicate that Zar1 plays important role in early embryo development, but little is known about its function in rabbit. The objectives of this study were to clone the New Zealand white rabbit Zar1 gene and to investigate its expression in various organs in groups of animals with different reproductive traits. We obtained a 709-bp Zar1 cDNA fragment consisting of an 8-bp exon 1, 161-bp exon 2, 75-bp exon 3, 271-bp exon 4 and 194-bp 3 ' sequences. The rabbit Zar1 nucleotide sequence showed per cent identities of 91, 88, 88, 87, 86, 87, 76 and 82% with Zar1 orthologues in human, cattle, sheep, pig, mouse, rat, zebrafish and Xenopus laevis, respectively, indicating a high homology with other species and evolutionary conservation. Quantitative real-time polymerase chain reaction analyses revealed nonoocyte-specific Zar1 expression, with expression in spleen, lung, ovary, uterus, heart, liver and kidney. The expression level was highest in the lung. This study may lay the theoretical foundation for the study of ZAR1’s biological function.  相似文献   

17.

Background

The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF). Previous studies demonstrated that the K+ channel opener 1-ethyl-2-benzimidazolone (1-EBIO) potentiates CFTR-mediated Cl secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown.

Methods

We studied the effects of 1-EBIO on CFTR-mediated Cl secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl secretion.

Results

Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl secretion by 39.2±6.7% (P<0.001) via activation of basolateral Ca2+-activated and clotrimazole-sensitive KCNN4 K+ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001), but had no effect on tissues lacking CFTR-mediated Clconductance.

Conclusions

We conclude that 1-EBIO potentiates Clsecretion in native CF tissues expressing CFTR mutants with residual Cl channel function by activation of basolateral KCNN4 K+ channels that increase the driving force for luminal Cl exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF.  相似文献   

18.
《Genomics》2022,114(2):110279
Cystic fibrosis (CF) and cystic fibrosis transmembrane conductance regulator (CFTR) mutations have been shown to be associated with the risk of a variety of cancers. However, the clinical significance of aberrant CFTR gene expression in human tumors remains unknown. The expression profiles and prognostic landscapes of CFTR in human cancers were identified from the PubMed, OVID, CNKI, TCGA, ONCOMINE, PrognoScan, and GEPIA databases. Over 11, 000 cancer samples from the literature, GEPIA database, and PrognoScan database were included in this study. In general, CFTR has various expression and prognostic profiles in cancers, but the results from cross-database and meta-analyses revealed that CFTR is a robust biomarker for LUAD prognosis. Collectively, this study suggests that CFTR is an important prognostic biomarker for LUAD survival, implying that it could be used as a prognostic biomarker and therapeutic target for LUAD.  相似文献   

19.
Extensive efforts have been devoted to study A-type lamins because mutations in their gene, LMNA in humans, are associated with a number of diseases. The mouse germline mutations in the A-type lamins (encoded by Lmna) exhibit postnatal lethality at either 4–8 postnatal (P) weeks or P16–18 days, depending on the deletion alleles. These mice exhibit defects in several tissues including hearts and skeletal muscles. Despite numerous studies, how the germline mutation of Lmna, which is expressed in many postnatal tissues, affects only selected tissues remains poorly understood. Addressing the tissue specific functions of Lmna requires the generation and careful characterization of conditional Lmna null alleles. Here we report the creation of a conditional Lmna knockout allele in mice by introducing loxP sites flanking the second exon of Lmna. The Lmnaflox/flox mice are phenotypically normal and fertile. We show that Lmna homozygous mutants (LmnaΔ/Δ) generated by germline Cre expression display postnatal lethality at P16–18 days with defects similar to a recently reported germline Lmna knockout mouse that exhibits the earliest lethality compared to other germline knockout alleles. This conditional knockout mouse strain should serve as an important genetic tool to study the tissue specific roles of Lmna, which would contribute toward the understanding of various human diseases associated with A-type lamins.  相似文献   

20.
The spontaneous development of juvenile-onset, ovarian granulosa cell (GC) tumors in the SWR/Bm (SWR) inbred mouse strain is a model for juvenile-type GC tumors that appear in infants and young girls. GC tumor susceptibility is supported by multiple Granulosa cell tumor (Gct) loci, but the Gct1 locus on Chr 4 derived from SWR strain background is fundamental for GC tumor development and uniquely responsive to the androgenic precursor dehydroepiandrosterone (DHEA). To resolve the location of Gct1 independently from other susceptibility loci, Gct1 was isolated in a congenic strain that replaces the distal segment of Chr 4 in SWR mice with a 47 × 106-bp genomic segment from the Castaneus/Ei (CAST) strain. SWR females homozygous for the CAST donor segment were confirmed to be resistant to DHEA- and testosterone-induced GC tumorigenesis, indicating successful exchange of CAST alleles (Gct1 CA ) for SWR alleles (Gct1 SW ) at this tumor susceptibility locus. A series of nested, overlapping, congenic sublines was created to fine-map Gct1 based on GC tumor susceptibility under the influence of pubertal DHEA treatment. Twelve informative lines have resolved the Gct1 locus to a 1.31 × 106-bp interval on mouse Chr 4, a region orthologous to human Chr 1p36.22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号