首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Hepatitis C virus (HCV) has been reported to regulate cellular microRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma, but HCV core-modulated cellular microRNAs are unknown. The HCV core protein regulates p21Waf1/Cip1 expression. However, the mechanism of HCV core-associated p21Waf1/Cip1 regulation remains to be further clarified. Therefore, we attempted to determine whether HCV core-modulated cellular microRNAs play an important role in regulating p21Waf1/Cip1 expression in human hepatoma cells.

Methods

Cellular microRNA profiling was investigated in core-overexpressing hepatoma cells using TaqMan low density array. Array data were further confirmed by TaqMan real-time qPCR for single microRNA in core-overexpressing and full-length HCV replicon-expressing cells. The target gene of microRNA was examined by reporter assay. The gene expression was determined by real-time qPCR and Western blotting. Apoptosis was examined by annexin V-FITC apoptosis assay. Cell cycle analysis was performed by propidium iodide staining. Cell proliferation was analyzed by MTT assay.

Results

HCV core protein up- or down-regulated some cellular microRNAs in Huh7 cells. HCV core-induced microRNA-345 suppressed p21Waf1/Cip1 gene expression through targeting its 3′ untranslated region in human hepatoma cells. Moreover, the core protein inhibited curcumin-induced apoptosis through p21Waf1/Cip1-targeting microRNA-345 in Huh7 cells.

Conclusion and Significance

HCV core protein enhances the expression of microRNA-345 which then down-regulates p21Waf1/Cip1 expression. It is the first time that HCV core protein has ever been shown to suppress p21Waf1/Cip1 gene expression through miR-345 targeting.  相似文献   

2.
Human septin-septin interaction: CDCrel-1 partners with KIAA0202   总被引:11,自引:0,他引:11  
  相似文献   

3.
4.
Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.  相似文献   

5.
6.
7.
8.
Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.  相似文献   

9.

Background

Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection.

Methodology

Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed.

Principal Findings

HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05).

Conclusions

HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection.  相似文献   

10.
11.
12.
Human Golgi phosphoprotein 2 gene (also known as GOLPH2, GP73 or GOLM1) encodes an epithelial-specific Golgi membrane protein which can be induced by virus infection. It is also overexpressed in a number of tumors and is currently considered as an early diagnosis marker for hepatocellular carcinoma. However, little is known about how GOLPH2 is dysregulated in these disease conditions and the functional implications of its overexpression. The aim of this study is to investigate human GOLPH2 regulation mechanisms. We cloned a 2599 bp promoter fragment of GOLPH2 and found it maintained epithelial specificity. By deletion analysis, a repressive region (-864 to -734 bp), a positive regulatory region (-734 to -421 bp) and a core promoter region (-421 to -79 bp) were identified. Sequence analysis revealed that GOLPH2 core promoter was devoid of canonical TATA element and classified as a TATA-less promoter. Adenoviral early region 1A (E1A) was able to activate GOLPH2 and the CtBP interaction domain of E1A was sufficient but not required for activation. A GC-box motif (-89 to -83 bp) in GOLPH2 core promoter region partly mediated E1A transactivation. These results delineated regulatory regions and functional element in GOLPH2 promoter, elucidated adenoviral E1A stimulation mechanisms and provided insight into GOLPH2 functions.  相似文献   

13.
14.
Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver dysfunction in humans and is epidemiologically closely associated with the development of human hepatocellular carcinoma. Among HCV components, core protein has been reported to be implicated in cell growth regulation both in vitro and in vivo, although mechanisms explaining those effects are still unclear. In the present study, we identified that members of the 14-3-3 protein family associate with HCV core protein. 14-3-3 protein bound to HCV core protein in a phosphoserine-dependent manner. Introduction of HCV core protein caused a substantial increase in Raf-1 kinase activity in HepG2 cells and in a yeast genetic assay. Furthermore, the HCV core-14-3-3 interaction was essential for Raf-1 kinase activation by HCV core protein. These results suggest that HCV core protein may represent a novel type of Raf-1 kinase-activating protein through its interaction with 14-3-3 protein and may contribute to hepatocyte growth regulation.  相似文献   

15.
16.
17.
18.
Hepatitis C virus (HCV) infection is associated with the development of hepatocellular carcinoma and putatively also non-Hodgkin's B cell lymphoma. In this study, we demonstrated that PBMCs obtained from HCV-infected patients showed frequent chromosomal aberrations and that HCV infection of B cells in vitro induced enhanced chromosomal breaks and sister chromatid exchanges. HCV infection hypersensitized cells to ionizing radiation and bleomycin and inhibited nonhomologous end-joining repair. The viral core and nonstructural protein 3 proteins were shown to be responsible for the inhibition of DNA repair, mediated by NO and reactive oxygen species. Stable expression of core protein induced frequent chromosome translocations in cultured cells and in transgenic mice. HCV core protein binds to the NBS1 protein and inhibits the formation of the Mre11/NBS1/Rad50 complex, thereby affecting ATM activation and inhibiting DNA binding of repair enzymes. Taken together, these data indicate that HCV infection inhibits multiple DNA repair processes to potentiate chromosome instability in both monocytes and hepatocytes. These effects may explain the oncogenicity and immunological perturbation of HCV infection.  相似文献   

19.
Background Hepatitis C virus (HCV) frequently causes chronic hepatitis, cirrhosis, and hepatocellular carcinoma after long-term persistent infection. Among various genotypes of HCV, HCV1b is resistant to standard interferon therapy, and thus the development of new treatment modality is needed. Results To provide a scientific basis for specific immunotherapy for HCV1b, we investigated HCV1b-derived epitope peptides recognized by human leukocyte antigen (HLA)-A11, -A31, or -A33-restricted cytotoxic T-lymphocytes (CTLs), and report here three novel vaccine candidate peptides selected by both antibody screening and CTL-inducing capacity from among 46 peptides of conserved regions of HCV1b sequences with binding motifs to HLA-A11, -A31, and -A33. Significant levels of IgG reactive to each of the three peptides were detected in the plasma of more than 50% of the HCV1b+ patients. One peptide at positions 30–39 of the core protein induced peptide-specific CTLs from peripheral blood mononuclear cells (PBMCs) of HLA-A11+, -A31+, and -A33+ patients. The other two peptides at positions 35–43 of the core protein and at positions 918–926 of the non-structural protein 2 also induced peptide-specific CTLs from the PBMCs of HLA-A11+ and -A33+ patients. Conclusion Therefore, the peptide at positions 30–39 of the core protein could be an appropriate target molecule of specific immunotherapy for all HLA-A11+, -A31+, and -A33+ patients with HCV1b-related diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号