首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochromes c of fungi and higher plants contain one or two residues of epsilon-N-trimethyllysine, whose biological role is unknown. A cytochrome c-specific S-adenosylmethionine:protein-sysine methyltransferase (methylase) activity was shown to be present in extracts of the bakers' yeast Saccharomyces cerevisiae, and basic kinetic properties of this enzyme are described. The specific activity of the methylase was lower in extracts of cells grown under conditions of catabolite (glucose) repression or anaerobiosis where cytochrome c levels were low, compared with cells grown under derepressed conditions where cytochrome c levels were high. During anaerobic-to-aerobic adaptation, the methylase was induced in parallel with cytochrome c, thus suggesting that the syntheses of cytochrome c and cytochrome c methylase are coordinately regulated. None of the cyc strains surveyed (cyc1, cyc2, cyc3, cyc4, cyc5, and cyc6) had diminished levels of methylase, although some of them were completely or almost completely deficient in cytochrome c.  相似文献   

2.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c552, is similar to a number of c-type cytochromes from the α-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c552 revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

3.
Transfer of electron from quinol to cytochrome c is an integral part of catalytic cycle of cytochrome bc1. It is a multi-step reaction involving: i) electron transfer from quinol bound at the catalytic Qo site to the Rieske iron-sulfur ([2Fe-2S]) cluster, ii) large-scale movement of a domain containing [2Fe-2S] cluster (ISP-HD) towards cytochrome c1, iii) reduction of cytochrome c1 by reduced [2Fe-2S] cluster, iv) reduction of cytochrome c by cytochrome c1.In this work, to examine this multi-step reaction we introduced various types of barriers for electron transfer within the chain of [2Fe-2S] cluster, cytochrome c1 and cytochrome c. The barriers included: impediment in the motion of ISP-HD, uphill electron transfer from [2Fe-2S] cluster to heme c1 of cytochrome c1, and impediment in the catalytic quinol oxidation. The barriers were introduced separately or in various combinations and their effects on enzymatic activity of cytochrome bc1 were compared. This analysis revealed significant degree of functional flexibility allowing the cofactor chains to accommodate certain structural and/or redox potential changes without losing overall electron and proton transfers capabilities. In some cases inhibitory effects compensated one another to improve/restore the function. The results support an equilibrium model in which a random oscillation of ISP-HD between the Qo site and cytochrome c1 helps maintaining redox equilibrium between all cofactors of the chain. We propose a new concept in which independence of the dynamics of the Qo site substrate and the motion of ISP-HD is one of the elements supporting this equilibrium and also is a potential factor limiting the overall catalytic rate.  相似文献   

4.
Cytochrome c553 of Heliobacterium modesticaldum is the donor to P800 +, the primary electron donor of the heliobacterial reaction center (HbRC). It is a membrane-anchored 14-kDa cytochrome that accomplishes electron transfer from the cytochrome bc complex to the HbRC. The petJ gene encoding cyt c 553 was cloned and expressed in Escherichia coli with a hexahistidine tag replacing the lipid attachment site to create a soluble donor that could be made in a preparative scale. The recombinant cytochrome had spectral characteristics typical of a c-type cytochrome, including an asymmetric α-band, and a slightly red-shifted Soret band when reduced. The EPR spectrum of the oxidized protein was characteristic of a low-spin cytochrome. The midpoint potential of the recombinant cytochrome was +217 ± 10 mV. The interaction between soluble recombinant cytochrome c 553 and the HbRC was also studied. Re-reduction of photooxidized P800 + was accelerated by addition of reduced cytochrome c 553. The kinetics were characteristic of a bimolecular reaction with a second order rate of 1.53 × 104 M?1 s?1 at room temperature. The rate manifested a steep temperature dependence, with a calculated activation energy of 91 kJ mol?1, similar to that of the native protein in Heliobacillus gestii cells. These data demonstrate that the recombinant soluble cytochrome is comparable to the native protein, and likely lacks a discrete electrostatic binding site on the HbRC.  相似文献   

5.
The midpoint redox potential of cytochrome c and the electron paramagnetic resonance spectra of nitroxide labeled cytochromes c were measured as a function of binding to purified cytochrome c oxidase, cytochrome c peroxidase, cytochrome b5 and succinate—cytochrome c reductase. The midpoint redox potential of horse heart cytochrome c is lowered in the presence of cytochrome c oxidase and succinate-cytochrome c reductase, but is unchanged in the presence of cytochrome c peroxidase or cytochrome b5. Further evidence of binding is afforded by an increase in correlation time, Tc, of the spin-labeled cytochrome c at methionine 65 upon binding to cytochrome c peroxidase, cytochrome c oxidase and succinate—cytochrome c reductase. The changes in midpoint redox potential and electron paramagnetic resonance spectrum of the spin-labeled derivative upon binding can either be the consequence of specific interaction leading to formation of ES complexes, or it can be due to nonspecific electrostatic interaction between positively charged groups on cytochrome c and negatively charged groups on the isolated cytochrome preparations.  相似文献   

6.
Lysine residues of horse heart cytochrome c have been modified with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) and ethyl N-5-azido-2-nitrobenzoylaminoacetimidate (ANB-AI), reagents that attach nitroaryl azides onto the surface of proteins by amide and amidine linkages, respectively. When acting as an electron acceptor for yeast cytochrome b2, modification of cytochrome c with ANB-NOS increases the Km for the reaction by 2-fold, while modification with ANB-AI has little effect on the Km. The Vmax for the reduction of cytochrome c by cytochrome b2 is reduced by the attachment of both compounds to cytochrome c. When the modified cytochromes c were illuminated with phosvitin, cytochrome b5, and cytochrome c peroxidase, cross-linked species were formed which could be resolved by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. In each case the amidine derivatives of cytochrome c modified with ANB-AI showed more cross-linking than the amide derivatives of cytochrome c modified with ANB-NOS. When the modified cytochromes c were present in a 3-fold excess of phosvitin, cross-linked products containing 1, 2, and 3 molecules of cytochrome c covalently attached to phosvitin were observed. Photolysis of the modified cytochromes c in the presence of cytochrome b5, resulted in the formation of a cross-linked 1:1 complex between the two cytochromes as well as higher order aggregates containing up to 5 molecules of cytochrome c plus cytochrome b2. When cytochrome c peroxidase was illuminated with the modified cytochromes c, the predominant cross-linked product was a 1:1 complex between the two heme proteins. However, a cross-linked species was detected in small amounts with the apparent composition of 2 molecules of cytochrome c and 1 of the peroxidase. Also, a procedure is described for the synthesis of ANB-AI with 14C in the imidocarbon which is ultimately derived from 14CN.  相似文献   

7.
The electron transfer reactions between Rhus vernicifera stellacyanin and either horse heart cytochrome c or Pseudomonas aeruginosa cytochrome c551 were investigated by rapid reaction techniques. The time course of electron transfer is monophasic under all conditions, and thus consistent with a simple formulation of the reaction. Both stopped-flow and temperature-jump experiments yield equilibrium constants in reasonable agreement with values calculated from the redox potentials. The differences in reaction rate between the two cytochromes and stellacyanin are discussed in terms of the Marcus theory.  相似文献   

8.
Several cytochromes c2 from the Rhodospirillaceae show a pH dependence of redox potential in the physiological pH range which can be described by equations involving an ionisation in the oxidised form (pKo) and one in the reduced form (pKr). These cytochromes fall into one of two groups according to the degree of separation of pKo and pKr. In group A, represented here by the Rhodomicrobium vannielii cytochrome c2, the separation is approx. one pH unit and the ionisation is that of a haem propionic acid. Members of this group are unique among both cytochromes c2 and mitochondrial cytochromes c in lacking the conserved residue Arg-38. We propose that the role of Arg-38 is to lower the pK of the nearby propionic acid, so that it lies out of the physiological pH range. Substitution of this residue by an uncharged amino acid leads to a raised pK for the propionic acid. In group B, represented here by Rhodopseudomonas viridis cytochrome c2, the separation between pKo and pKr is approx. 0.4 pH unit and the ionisable group is a histidine at position 39. This was established by NMR spectroscopy and confirmed by chemical modification. Only a few other members of the cytochrome c2/mitochondrial cytochrome c family have a histidine at this position and of these, both Crithidia cytochrome c-557 and yeast cytochrome c were found to have a pH-dependent redox potential similar to that of Rps. viridis cytochrome c2. Using Coulomb's law, it was found that the energy required to separate pKo and pKr could be accounted for by simple electrostatic interactions between the haem iron and the ionisable group.  相似文献   

9.
The reactivity between different cytochromes c purified from Pseudomonas aeruginosa cells grown aerobically in the absence of nitrate and isolated cytochromes co and baa 3 was determined. The P. aeruginosa cytochrome co reacted most rapidly with the membrane-bound cytochrome c-551 among three c-type cytochromes analyzed, whereas the cytochrome baa 3 reacted best with the membrane-bound cytochrome c-555. The results indicated that two terminal electron transfer systems are present in aerobic P. aeruginosa: one contains the cytochrome c-551 and cytochrome co, and the other contains the cytochrome c-555 and cytochrome baa 3.  相似文献   

10.
The aim of this study was to clarify the pathway of electron transfer between the inner membrane components and the periplasmic chlorate reductase. Several soluble c-type cytochromes were found in the periplasm. The optical difference spectrum of dithionite-reduced periplasmic extract shows that at least one of these components is capable of acting as an electron donor to the enzyme chlorate reductase. The cytochromes were partially separated, and the fractions were analyzed by UV/visible spectroscopy to determine the ability of donating electrons to chlorate reductase. Our results show that one of the c cytochromes (6 kDa) is able to donate electrons, both to chlorate reductase and to the membrane-bound cytochrome c oxidase, whereas the roles of the remaining c cytochromes still remain to be elucidated. Peptide extracts of the c cytochromes were obtained by tryptic in-gel digestion for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. Peptide sequences obtained indicate that the 6-kDa cytochrome c protein is similar to c cytochromes from the chlorate-reducing bacterium Dechloromonas aromatica.Oxyanions of chlorine (ClO3 and ClO4) occur in the environment mainly as by-products from human activities (6, 7). The decomposition of chlorate by microbial respiration is important in the treatment of industrial effluents and has been known since the beginning of the 20th century (2). One of the chlorate-respiring bacteria, the gram-negative Ideonella dechloratans, was isolated by Malmqvist and coworkers (8).Chlorate metabolism takes place in the periplasmic space between the inner and outer membranes and involves the soluble enzymes chlorate reductase and chlorite dismutase. The reaction takes place in two steps. First, chlorate is reduced to chlorite by chlorate reductase in a two-electron transfer reaction. The second step is the decomposition of chlorite into chloride ions and molecular oxygen, which is catalyzed by chlorite dismutase. Both enzymes have been isolated and characterized, and their genes have been sequenced (4, 5, 15). Chlorate reduction is coupled to cell growth, suggesting that chlorate reductase is part of a respiratory chain that generates an electrochemical gradient, which can serve as the driving force for ATP synthesis. The aim of this study was to investigate the pathways of electron transfer, in particular the route between membrane-bound components of the respiratory chain and the soluble periplasmic enzymes, in I. dechloratans. One interesting aspect is the finding that a gene encoding a soluble c-type cytochrome is located downstream of the gene for chlorate reductase (GenBank accession no. EU768872) (J. Bohlin, A. Smedja Bäcklund, N. Gustavsson, S. Wahlberg, and J. Nilsson, unpublished data).Although the electron transport pathways in bacteria differ, two major strategies for the transfer of electrons to soluble enzymes seem to occur. One strategy is the oxidation of quinol by cytochrome bc1 complex, followed by electron transfer to a soluble c-type cytochrome. In the other strategy, where the bc1 complex is absent or not involved, electron transfer is mediated by a membrane-anchored periplasmic c-type cytochrome belonging to the NapC/NirT family (13).The chlorate reductase in I. dechloratans shows similarity to molybdopterin-containing members of the type II subgroup of the dimethyl sulfoxide reductase family (10). One member of the family, dimethyl sulfoxide dehydrogenase (Ddh) from the phototrophic Rhodovulum sulfidophilum, utilizes a soluble cytochrome c for transfer of electrons, but in the reverse direction. The β subunit in Ddh donates electrons to the membrane-bound photochemical center, mediated by the soluble cytochrome c2 (9). Another member of the dimethyl sulfoxide reductase family, the closest known relative to chlorate reductase in I. dechloratans, is selenate reductase from Thauera selenatis (14). The quaternary structure of this enzyme is very similar to that of Ddh in R. sulfidophilum, and it has been suggested that the enzyme may interact with a periplasmic c cytochrome that receives electrons from the bc1 complex (10). Several other (per)chlorate-reducing bacteria, such as Dechloromonas agitata (1), Dechloromonas aromatica strain RCB (3), and strain GR-1 (12), have been isolated. In D. aromatica, several genes encoding NapC/NirT-like cytochromes have been found, but the physiological roles of the corresponding proteins are not known (3). The electron transfer pathways in D. agitata and strain GR-1 are unknown.The present study aims at investigating the role of soluble c-type cytochromes as electron mediators between the bc1 complex in the inner membrane and the periplasmic chlorate reductase in I. dechloratans. We have found that at least one of the periplasmic c-type cytochromes is capable to act as a electron donor to the enzyme chlorate reductase.  相似文献   

11.
Resonance Raman (RR) spectroscopy was used to investigate conformational characteristics of the hemes of several ferricytochromes of the cytochrome c 3 family, electron transfer proteins isolated from the periplasm and membranes of sulfate-reducing bacteria. Our analysis concentrated on the low-frequency region of the RR spectra, a fingerprint region that includes vibrations for heme-protein C–S bonds [ν(CaS)]. It has been proposed that these bonds are directly involved in the electron transfer process. The three groups of tetraheme cytochrome c 3 analyzed, namely Type I cytochrome c 3 (TpIc 3s), Type II cytochrome c 3 (TpIIc 3s) and Desulfomicrobium cytochromes c 3, display different frequency separations for the two ν(CaS) lines that are similar among members of each group. These spectral differences correlate with differences in protein structure observed among the three groups of cytochromes c 3. Two larger cytochromes of the cytochrome c 3 family display RR spectral characteristics for the ν(CaS) lines that are closer to TpIIc 3 than to TpIc 3. Two other multiheme cytochromes from Desulfovibrio that do not belong to the cytochrome c 3 family display ν(CaS) lines with reverse relative areas in comparison with the latter family. This RR study shows that the small differences in protein structure observed among these cytochrome c 3 correlate to differences on the heme–protein bonds, which are likely to have an impact upon the protein function, making RR spectroscopy a sensitive and useful tool for characterizing these cytochromes.  相似文献   

12.
The properties of the mitochondrial succinate-cytochrome c reductase   总被引:2,自引:0,他引:2  
The cytochromes b and bT of pigeon heart mitochondria have half-reduction potentials (Em's) of +30 mV and −30 mV at pH 7.2. The midpoint potentials of these cytochromes become more negative by 30–60 mV per pH unit when the pH is made more alkaline. Detergents may be used to prepare a succinate-cytochrome c reductase free of cytochrome oxidase in which the activation of electron transport induced by oxidation of cytochrome c1 causes the half-reduction potential of cytochrome bT to become at least 175 mV more positive than in the absence of electron transport. This change is interpreted as indicating that the primary energy conservation reaction at site 2 remains fully functional in the purified reductase. Preliminary electron paramagnetic resonance spectra of the succinate-cytochrome c reductase as measured at near liquid helium temperatures are presented.  相似文献   

13.
Cytochrome c peroxidase (CcP) uses hydrogen peroxide as an electron acceptor to oxidize cytochrome c (Cc) in the mitochondrial intermembrane space. A null allele of yeast CCP1 gene encoding CcP was created by one-step gene disruption method in a diploid yeast strain. Haploid yeast cells with the disrupted CCP1 gene were viable and able to grow in a medium containing lactic acid or glycerol as an energy source, indicating that CcP is not essential for both cell viability and respiration. However, CCP1-disrupted cells were more sensitive to H2O2 than wild-type cells. We also constructed a CCP1–lacZ fused gene and integrated this gene into yeast chromosomal DNA to monitor the expression of CCP1 gene. We found that expression of CCP1 gene increases under respiratory culture conditions and by treatments with H2O2. These results hint that the biological function of CcP is to reduce H2O2 generated during aerobic respiratory process. Moreover, expression of CCP1 gene increased by treatments with peroxynitrite, indicating that CcP may act as a peroxynitrite scavenger.  相似文献   

14.
Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the b-heme was determined by optical titration (Em + 234 ± 10 mV). A profile of periplasmic c-type cytochromes expressed in T. selenatis under selenate respiring conditions was undertaken. Two c-type cytochromes were purified (∼24 and ∼6 kDa), and the 24-kDa protein (cytc-Ts4) was shown to donate electrons to SerABC in vitro. Protein sequence of cytc-Ts4 was obtained by N-terminal sequencing and liquid chromatography-tandem mass spectrometry analysis, and based upon sequence similarities, was assigned as a member of cytochrome c4 family. Redox potentiometry, combined with UV-visible spectroscopy, showed that cytc-Ts4 is a diheme cytochrome with a redox potential of +282 ± 10 mV, and both hemes are predicted to have His-Met ligation. To identify the membrane-bound electron donors to cytc-Ts4, growth of T. selenatis in the presence of respiratory inhibitors was monitored. The specific quinol-cytochrome c oxidoreductase (QCR) inhibitors myxothiazol and antimycin A partially inhibited selenate respiration, demonstrating that some electron flux is via the QCR. Electron transfer via a QCR and a diheme cytochrome c4 is a novel route for a member of the DMSO reductase family of molybdoenzymes.  相似文献   

15.
A cytochrome c from Humicola lanuginosa is unique among eukaryotic cytochromes c in having phenylalanine as Residue 74. This protein has certain properties which differ from those of other cytochromes c to which it is generally similar. The Humicola cytochrome c is as stable as horse heart cytochrome c in urea, but more stable than both horse heart and yeast cytochromes c in acidic and alkaline conditions. Spectrophotometric titration of the four tyrosyl residues of the Humicola protein was nonsigmoidal with a pKapp of 11.4. Solvent perturbation difference spectra indicate that 50% of the tyrosyl residues are exposed to solvent in the native protein, and that the single tryptophanyl and all four tyrosyl residues become exposed in 8 m urea. Certain unusual features in both the optical rotatory dispersion and circular dichroism spectra in the 290-250-nm region are tentatively attributed to the substitution of phenylalanine for tyrosine at position 74.  相似文献   

16.
W.John Ingledew  John G. Cobley 《BBA》1980,590(2):141-158
The type and number of respiratory chain components present in membranes of Thiobacillus ferrooxidans have been investigated. These redox components were resolved potentiometrically and kinetically. Using optical techniques two cytochromes a1, multiple cytochromes c and two cytochromes b were detected. By using electron paramagnetic resonance, two copper-containing centres, high and low spin ferric haems and a ferredoxin centre were detected. Based on the combination of a potentiometric resolution and a kinetic study a model for the sequence of the respiratory chain components in the Fe2+ to O2 branch of the T. ferrooxidans respiratory chain is proposed.  相似文献   

17.
Several components of the respiratory chain of the eubacterium Thermus thermophilus have previously been characterized to various extent, while no conclusive evidence for a cytochrome bc1 complex has been obtained. Here, we show that four consecutive genes encoding cytochrome bc1 subunits are organized in an operon-like structure termed fbcCXFB. The four gene products are identified as genuine subunits of a cytochrome bc1 complex isolated from membranes of T. thermophilus. While both the cytochrome b and the FeS subunit show typical features of canonical subunits of this respiratory complex, a further membrane-integral component (FbcX) of so far unknown function copurifies as a subunit of this complex. The cytochrome c1 carries an extensive N-terminal hydrophilic domain, followed by a hydrophobic, presumably membrane-embedded helical region and a typical heme c binding domain. This latter sequence has been expressed in Escherichia coli, and in vitro shown to be a kinetically competent electron donor to cytochrome c552, mediating electron transfer to the ba3 oxidase. Identification of this cytochrome bc1 complex bridges the gap between the previously reported NADH oxidation activities and terminal oxidases, thus, defining all components of a minimal, mitochondrial-type electron transfer chain in this evolutionary ancient thermophile.  相似文献   

18.
《BBA》1986,848(3):402-410
Effects of temperature and dehydration on the efficiency of electron transfer from membrane-bound high-potential cytochromes ch to the reaction-center bacteriochlorophyll (P-890) in Ectothiorhodospira shaposhnikovii have been studied. A kinetic analysis of the cytochrome oxidation suggests that there are at least two conformational states of the ch-P-890 complex, of which only one allows photoinduced electron transfer from cytochrome to P-890+. Lowering the temperature of dehydration leads to a change in the proportion of the populations in the two conformations. The observed 2-fold deceleration of cytochrome oxidation can be related only to the diminution of the amount of photoactive cytochromes per reaction center. The rate constant for the transfer of an electron from cytochrome ch to bacteriochlorophyll is 2.8 · 105 s−1 and is independent of temperature and dehydration (as estimated within the accuracy of the experiments). The effects produced by low temperature and dehydration are completely reversible. The thermodynamic parameters of the transition of the cytochrome from the nontransfer to electron-transfer conformation were estimated. For room temperature (+ 20°C) in chromatophore preparations, ΔG = −5.4 kJ · M−1, ΔH = 60 kJ · M−1, ΔS = 0.22 kJ · M−1 · K−1. For Triton X-100 subchromatophore preparations, the absolute values of the above parameters are significantly lower: ΔG = −2.8 kJ · M−1, ΔH = 18 kJ · M−1, and ΔS = 0.075 kJ · M−1 · K−1. To a larger extent, the above parameters are diminished for chromatophore preparations in an 80% glycerol solution: ΔG = −1.7 kJ · M−1, ΔH = 6 kJ · M−1, ΔS = 0.025 kJ · M−1 · K−1. The data suggest the hydrophobic character of the forces that maintain the P-890-ch complex in the electron-transfer conformation. The results obtained suggest that electron tunneling within the complex cannot occur until a specific conformational configuration of the complex is formed. The efficiency of cytochrome ch oxidation is determined by the temperature, the degree of dehydration and the environmental conditions, whereas the transfer of an electron itself in the electron-transfer configuration is essentially independent of temperature and hydration.  相似文献   

19.
Bovine heart cytochrome c oxidase and rat liver mitochondria were crosslinked in the presence and absence of cytochrome c. Biimidate treatment of purified cytochrome oxidase, which results in the crosslinkage of all of the oxidase protomers except subunit I when ? 20% of the free amines are modified, inhibits ascorbate-N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity. Intermolecular crosslinking of cytochrome oxidase molecules, which results in the formation of large enzyme aggregates displaying rotational correlation times ? 1 ms, does not affect oxidase activity. Crosslinking of mitochondria covalently binds the cytochrome bc1 and aa3 complexes to cytochrome c, and inhibits steady-state oxidase activity. Addition of cytochrome c to purified cytochrome oxidase or to cytochrome c-depleted mitoplasts increases this inhibition slightly. Cytochrome c oligomers act as competitive inhibitors of native cytochrome c; however, crosslinking of cytochrome c to cytochrome c-depleted mitoplasts or purified cytochrome oxidase results in a catalytically inactive complex. These experiments indicate that cytochrome c oxidase subunit interactions are required for activity, and that cytochrome c mobility may be essential for electron transport between cytochrome c reductase and oxidase.  相似文献   

20.
《FEBS letters》1986,206(1):157-161
Desulfovibrio desulfuricans grown in a lactate-sulfate medium produces, in addition to soluble cytochromes, c-type cytochromes which appear to be integral membrane proteins. Two cytochromes can be separated, an abundant 15 kDa cytochrome and a 22 kDa cytochrome. Both have optical spectra characteristics of c-type cytochromes. The 15 kDa cytochrome shows two n = 1 components in potentiometric redox titrations with midpoint potentials at −130 and −270 mV in the membrane; both were slightly lower in detergent-solubilized preparations. We suggest a designation of cytochrome ccm for this species. Its properties suggest a function as a transmembrane electron carrier between hydrogen and sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号