首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogasterD. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.  相似文献   

2.
3.
The PufX protein, encoded by the pufX gene of Rhodobacter sphaeroides, plays a key role in the organization and function of the core antenna (LH1)-reaction centre (RC) complex, which collects photons and triggers primary photochemical reactions. We synthesized a PufX/maltose-binding protein (MBP) fusion protein to study the effect of the PufX protein on the reconstitution of B820 subunit-type and LH1-type complexes. The fusion protein was synthesized using an Escherichia coli expression system and purified by affinity chromatography. Reconstitution experiments demonstrated that the MBP-PufX protein destabilizes the subunit-type complex (20°C), consistent with previous reports. Interestingly, however, the preformed LH1-type complex was stable in the presence of MBP-PufX. The MBP-PufX protein did not influence the preformed LH1-type complexes (4°C). The LH1-type complex containing MBP-PufX showed a unique temperature-dependent structural transformation that was irreversible. The predominant form of the complex at 4°C was the LH1-type. When shifted to 20°C, subunit-type complexes became predominant. Upon subsequent cooling back to 4°C, instead of re-forming the LH1-type complexes, the predominant form remained the subunit-type complexes. In contrast, reversible transformation of LH1 (4°C) and subunit-type complexes (20°C) occurs in the absence of PufX. These results are consistent with the suggestion that MBP-PufX interacts with the LH1α- polypeptide in the subunit (α/β)-type complex (at 20°C), preventing oligomerization of the subunit to form LH1-type complexes.  相似文献   

4.
Prefoldin (PFD) is a hexameric chaperone that captures a protein substrate and transfers it to a group II chaperonin (CPN) to complete protein folding. We have studied the interaction between PFD and CPN using those from a hyperthermophilic archaeon, Thermococcus strain KS-1 (T. KS-1). In this study, we determined the crystal structure of the T. KS-1 PFDβ2 subunit and characterized the interactions between T. KS-1 CPNs (CPNα and CPNβ) and T. KS-1 PFDs (PFDα1-β1 and PFDα2-β2). As predicted from its amino acid sequence, the PFDβ2 subunit conforms to a structure similar to those of the PFDβ1 subunit and the Pyrococcus horikoshii OT3 PFDβ subunit, with the exception of the tip of its coiled-coil domain, which is thought to be the CPN interaction site. The interactions between T. KS-1 CPNs and PFDs (CPNα and PFDα1-β1; CPNα and PFDα2-β2; CPNβ and PFDα1-β1; and CPNβ and PFDα2-β2) were analyzed using the Biacore T100 system at various temperatures ranging from 20 to 45 ºC. The affinities between PFDs and CPNs increased with an increase in temperature. The thermodynamic parameters calculated from association constants showed that the interaction between PFD and CPN is entropy driven. Among the four combinations of PFD-CPN interactions, the entropy difference in binding between CPNβ and PFDα2-β2 was the largest, and affinity significantly increased at higher temperatures. Considering that expression of PFDα2-β2 and CPNβ subunit is induced upon heat shock, our results suggest that PFDα1-β1 is a general PFD for T. KS-1 CPNs, whereas PFDα2-β2 is specific for CPNβ.  相似文献   

5.
The 20S Proteasome of Streptomyces coelicolor   总被引:2,自引:0,他引:2       下载免费PDF全文
20S proteasomes were purified from Streptomyces coelicolor A3(2) and shown to be built from one α-type subunit (PrcA) and one β-type subunit (PrcB). The enzyme displayed chymotrypsin-like activity on synthetic substrates and was sensitive to peptide aldehyde and peptide vinyl sulfone inhibitors and to the Streptomyces metabolite lactacystin. Characterization of the structural genes revealed an operon-like gene organization (prcBA) similar to Rhodococcus and Mycobacterium spp. and showed that the β subunit is encoded with a 53-amino-acid propeptide which is removed during proteasome assembly. The upstream DNA region contains the conserved orf7 and an AAA ATPase gene (arc).  相似文献   

6.
《Insect Biochemistry》1989,19(5):457-461
The properties of xanthine dehydrogenase from Drosophila virilis have been studied and the effects of adenine on the enzyme analysed. The enzyme has a much higher thermal stability than that from D. melanogaster. Ammonium sulphate fractionation of the extracts precipitated the enzyme in the 0–40% saturation stage whereas the D. melanogaster enzyme precipitates between 40–60% saturation. Xanthine dehydrogenase activity per mg protein in crude extracts is 40–45% lower in D. virilis than in D. melanogaster but it is more resistant to dialysis. In vitro addition of adenine inhibits both enzymes but does not appear to stabilise the D. virilis enzyme during dialysis.  相似文献   

7.
SATELLITE DNAs are heavily concentrated in the centromeric heterochromatin of metaphase chromosomes1–3. Satellites and other repeated polynucleotide sequences are under-represented in the polytene, salivary gland cells of Drosophila melanogaster, D. virilis and D. hydei larvae but are fully represented in diploid cells from embryos and imaginal disks4–6. This under-representation in polytene cells stems from the association of heterochromatin in the chromocentre and the progressive under-replication of the chromocentre during larval development7,8.  相似文献   

8.
Two types of hetero-oligomeric dye-linked l-proline dehydrogenases (α4β4 and αβγδ types) are expressed in the hyperthermophilic archaea belonging to Thermococcales. In both enzymes, the β subunit (PDHβ) is responsible for catalyzing l-proline dehydrogenation. The genes encoding the two enzyme types form respective clusters that are completely conserved among Pyrococcus and Thermococcus strains. To compare the enzymatic properties of PDHβs from α4β4- and αβγδ-type enzyme complexes, eight PDHβs (four of each type) from Pyrococcus furiosus DSM3638, Pyrococcus horikoshii OT-3, Thermococcus kodakaraensis KOD1 JCM12380 and Thermococcus profundus DSM9503 were expressed in Escherichia coli cells and purified to homogeneity using one-step Ni-chelating chromatography. The α4β4-type PDHβs showed greater thermostability than most of the αβγδ-type PDHβs: the former retained more than 80 % of their activity after heating at 70 °C for 20 min, while the latter showed different thermostabilities under the same conditions. In addition, the α4β4-type PDHβs utilized ferricyanide as the most preferable electron acceptor, whereas αβγδ-type PDHβs preferred 2, 6-dichloroindophenol, with one exception. These results indicate that the differences in the enzymatic properties of the PDHβs likely reflect whether they were from an αβγδ- or α4β4-type complex, though the wider divergence observed within αβγδ-type PDHβs based on the phylogenetic analysis may also be responsible for their inconsistent enzymatic properties. By contrast, differences in the kinetic parameters among the PDHβs did not reflect the complex type. Interestingly, the k cat value for free α4β4-type PDHβ from P. horikoshii was much larger than the value for the same subunit within the α4β4-complex. This indicates that the isolated PDHβ could be a useful element for an electrochemical system for detection of l-proline.  相似文献   

9.
Five sesquiterpenoids, 1α,8α-epidioxy-4α-hydroxy- 5αH-guai-7(11),9-dien- 12,8-olide. (1), 8,9-seco-4β-hydroxy-1α,5βH-7(11)-guaen-8,10-olide (2), 8α-hydroxy-1α, 4β,7βH-guai-10(15)-en- 5β,8β-endoxide(3), 7β,8α-dihydroxy-1α,4αH-guai-10(15)-en-5β,8β-endoxide(4) and 7-hydroxy-5(10),6,8-cadinatriene-4-one(5), together with seven known analogs were isolated from the rhizomes of Curcuma wenyujin. Their structures and relative configurations were determined on the basis of spectroscopic methods including 2D NMR techniques, and the structures of 1 and 2 were confirmed by single-crystal X-ray diffraction experiment. Compounds 1–10 and 12 showed significant in vitro antiviral activity against the influenza virus A with IC50 values ranged from 6.80 to 39.97 μM, and SI values ranged from 6.35 to 37.25.  相似文献   

10.
Four eudesmane sesquiterpenoid lactones (14) and seven abietane diterpenoids (511) were isolated from the whole plants of Ajuga forrestii. Among them, 3α-acetoxy-1α,8β-dihydroxyeudesm-7(11)-en-8,12-olide (1), 3α-acetoxy-1α-hydroxyl-eudesm-8,7(11)-dien-8,12-olide (2), 1α-acetoxy-8α-oxyethyl-2-oxo-eudesman-3,7(11)-dien-8,12-olide (3) and 2α,3β,11,12-tetrahydroxy-7β,20-epoxy-8,11,13-abietatriene (11) are novel compounds. The structures of compounds 111 were determined by spectroscopic analysis. Compound 2 exhibited weak cytotoxicity on HepG2 and MCF-7 cell lines.  相似文献   

11.
Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 26, while M. phaseolina transformed compound 1 into polar metabolites 711. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 1214 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 114 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM.  相似文献   

12.
The biotransformation of 3β-acetoxypregna-5,16-diene-20-one (1) by using a filamentous fungus Penicillium citrinum resulted in the production of four metabolites 25. The structures of these compounds were elucidated by different spectroscopic analysis (1D- and 2D-NMR) and HR-ESI-MS as 3β,7β-dihydroxy-pregn-5,16(17)-dien-20-one (2), 3β-hydroxy-7α-methoxy-pregn-5,16(17)-dien-20-one (3), 3β,7β,11α-trihydroxy-pregn-5,16(17)-dien-20-one (4), and a known 3β,7α-dihydroxy-pregn-5,16(17)-dien-20-one (5). The 7-O-methylation is a novel reaction in the field of microbial transformation of pregnane steroids.  相似文献   

13.
Four new lanostane-type triterpenoids, inonotsuoxodiol B (1), inonotsuoxodiol C (2), epoxyinonotsudiol (3), and methoxyinonotsutriol (4), were isolated from the sclerotia of Inonotus obliquus. Their structures were determined to be 3β,22R-dihydroxylanosta-9(11),24-dien-7-one (1), 3β,22R-dihydroxylanosta-7,24-dien-11-one (2), 9α,11α-epoxy-lanosta-7,24-diene-3β,22R-diol (3), and 7β-methoxylanosta-8,24-diene-3β,11α,22R-triol (4) on the basis of NMR spectroscopy, including 1D and 2D (1H–1H-COSY, NOESY, HMQC, HMBC) NMR spectra, and EIMS.  相似文献   

14.
A new phenolic glycoside (E)-4-hydroxycinnamyl alcohol 4-O-(2′-O-β-d-apiofuranosyl)(1″  2′)-β-d-glucopyranoside (1) was isolated and identified from Cucumis melo seeds together with benzyl O-β-d-glucopyranoside (2), 3,29-O-dibenzoylmultiflor-8-en-3α,7β,29-triol (3) and 3-O-p-amino-benzoyl-29-O-benzoylmultiflor-8-en-3α,7β,29-triol (4). Their structures were elucidated by extensive NMR experiments including 1H–1H (COSY, TOCSY, ROESY) and 1H–13C (HSQC and HMBC) spectroscopy and chemical evidence. The multiflorane triterpene esters were identified as new melon constituents.  相似文献   

15.
《Phytochemistry》1987,26(9):2585-2587
In addition to five known sesquiterpenoids, six new compounds were isolated from Smyrnium perfoliatum. The new compounds were 1β-acetoxy-eudesma-3,7(11),8-trien-8,12-olide, 1β-acetoxyeudesma-4(15),7(11),8-trien-8,12-olide, 1β-10α;4α,5β-diepoxy-8β-isobutoxy-glechomanolide, 1β, 10α;4α,5β-diepoxy-8α-isobutoxy-glechomanolide, 1β,4α-dihydroxy-2α,3α-epoxy-eudesma-7(11),8-dien-8,12-olide, 1β,4α-dihydroxy-2α,3α-epoxy-8β-methoxy-eudesma-7(11)-en-8α,12-olide.  相似文献   

16.
 The proteasome is a multi-subunit protease responsible for the production of peptides presented by major histocompatibility complex class I molecules. Accumulated evidence indicates that, upon stimulation with interferon-γ (IFN-γ), three β-type subunits, designated LMP2, LMP7, and PSMB10, are incorporated into the 20S proteasome by displacing the housekeeping β-type subunits designated PSMB6, PSMB5, and PSMB7, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. In the present study, we determined the organization of the mouse gene Psmb5, coding for the PSMB5 subunit. Psmb5 is made up of three exons, spanning ∼5 kilobases. Its exon-intron organization differs radically from those of the other IFN-γ-regulated, β-type subunit genes including Lmp7 with which Psmb5 is believed to share an immediate common ancestor. The structure of the mouse Psmb5 gene is identical to that of its recently characterized human counterpart. Thus, the unique organization of the gene coding for the PSMB5 subunit appears to have been established before mammalian radiation. As well as the Psmb5 gene, the mouse genome contains a processed pseudogene designated Psmb5-ps. Interspecific backcross mapping showed that Psmb5 maps close to the Gtrgal2 locus on chromosome 14 and that Psmb5-ps is located in the vicinity of the Psme3 locus on chromosome 11. These results were confirmed by fluorescent in situ hybridization analysis that localized Psmb5 to band C2 to proximal D1 of chromosome 14 and Psmb5-ps to band D of chromosome 11. Received: 29 May 1997 / Revised: 4 June 1997  相似文献   

17.
It is well established that integrin α4β1 binds to the vascular cell adhesion molecule (VCAM) and fibronectin and plays an important role in signal transduction. Blocking the binding of VCAM to α4β1 is thought to be a way of controlling a number of disease processes. To better understand how various inhibitors might block the interaction of VCAM and fibronectin with α4β1, we began constructing a structure model for the integrin α4β1 complex. As the first step, we have built a homology model of the β1 subunit based on the I domain of the integrin CD11B subunit. The model, including a bound Mg2+ ion, was optimized through a specially designed relaxation scheme involving restrained minimization and dynamics steps. The native ligand VCAM and two highly active small molecules (TBC772 and TBC3486) shown to inhibit binding of CS-1 and VCAM to α4β1 were docked into the active site of the refined model. Results from the binding analysis fit well with a pharmacophore model that was independently derived from active analog studies. A critical examination of residues in the binding site and analysis of docked ligands that are both potent and selective led to the proposal of a mechanism for β1/β7 ligand binding selectivity.  相似文献   

18.
The phytochemical investigation of the roots of Euphorbia bupleuroides Desf. (Euphorbiaceae) yielded three new compounds named 4,20-dideoxy(4α)phorbol-12-benzoate-13-isobutyrate (1), 25-hydroperoxycycloart-3β-ol (2), and 3β,7β-dihydroxy-4α,14α-dimethyl-8β,9β-epoxy-5α-ergosta-24(28)-ene (3), together with 17 known compounds 4–20. Their structures were established from analysis of 1D (1H, 13C and DEPT) and 2D NMR (COSY, HSQC, HMBC and NOESY) data, and of mass spectrometry (HRESIMS), and by comparison with literature data.  相似文献   

19.
Eight neutral oligosaccharide fractions were obtained from the pooled urine of two patients with mannosidosis by Bio-Gel P2 and Bio-Gel P4 column chromatography. The structures of seventeen oligosaccharides were determined by monosaccharide composition analysis, methylation studies, acetolysis, Smith degradation, and 13C NMR analysis. Three of the proposed structures, Manα1-3Manβ1-4GlcNAc, Manα1-2Manα1-3Manβ1-4GlcNAc, and Manα1-2Manα1-2Manα1-3Manβ1-4GlcNAc are identical to those first published by Norden et al. (N. E. Norden, A. Lundblad, S. Svennson, P. A. Ockerman, and S. Autio, 1973. J. Biol. Chem.248, 6210–6215; N. E. Norden, A. Lundblad, S. Svennson, and S. Autio, 1974. Biochemistry13, 871–874). Thirteen of them, Manα1-3Manα1-6(Manα1-3)-Manβ1-4GlcNAc, Manα1-3Manα1-6(Manα1-2Manα1-3)Manβ1-4GlcNAc, and 11 isomers of (Manα1-2)0–4[Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAc], are the same as those first published by Yamashita et al. (K. Yamashita, Y. Tachibana, K. Mihara, S. Okada, H. Yabuuchi, and A. Kobata, 1980, J. Biol. Chem.255, 5126–5133); a tetrasac-charide, Manα1-6(Manα1-3)Manβ1-4GlcNAc, is newly reported and several other structural possibilities are proposed.  相似文献   

20.
In several metazoans including flies of the genus Drosophila, germ line specification occurs through the inheritance of maternally deposited cytoplasmic determinants, collectively called germ plasm. The novel insect gene oskar is at the top of the Drosophila germ line specification pathway, and also plays an important role in posterior patterning. A novel N-terminal domain of oskar (the Long Oskar domain) evolved in Drosophilids, but the role of this domain in oskar functional evolution is unknown. Trans-species transgenesis experiments have shown that oskar orthologs from different Drosophila species have functionally diverged, but the underlying selective pressures and molecular changes have not been investigated. As a first step toward understanding how Oskar function could have evolved, we applied molecular evolution analysis to oskar sequences from the completely sequenced genomes of 16 Drosophila species from the Sophophora subgenus, Drosophila virilis and Drosophila immigrans. We show that overall, this gene is subject to purifying selection, but that individual predicted structural and functional domains are subject to heterogeneous selection pressures. Specifically, two domains, the Drosophila-specific Long Osk domain and the region that interacts with the germ plasm protein Lasp, are evolving at a faster rate than other regions of oskar. Further, we provide evidence that positive selection may have acted on specific sites within these two domains on the D. virilis branch. Our domain-based analysis suggests that changes in the Long Osk and Lasp-binding domains are strong candidates for the molecular basis of functional divergence between the Oskar proteins of D. melanogaster and D. virilis. This molecular evolutionary analysis thus represents an important step towards understanding the role of an evolutionarily and developmentally critical gene in germ plasm evolution and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号