首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INE: a rice genome database with an integrated map view   总被引:7,自引:1,他引:6  
The Rice Genome Research Program (RGP) launched a large-scale rice genome sequencing in 1998 aimed at decoding all genetic information in rice. A new genome database called INE (INtegrated rice genome Explorer) has been developed in order to integrate all the genomic information that has been accumulated so far and to correlate these data with the genome sequence. A web interface based on Java applet provides a rapid viewing capability in the database. The first operational version of the database has been completed which includes a genetic map, a physical map using YAC (Yeast Artificial Chromosome) clones and PAC (P1-derived Artificial Chromosome) contigs. These maps are displayed graphically so that the positional relationships among the mapped markers on each chromosome can be easily resolved. INE incorporates the sequences and annotations of the PAC contig. A site on low quality information ensures that all submitted sequence data comply with the standard for accuracy. As a repository of rice genome sequence, INE will also serve as a common database of all sequence data obtained by collaborating members of the International Rice Genome Sequencing Project (IRGSP). The database can be accessed at http://www. dna.affrc.go.jp:82/giot/INE.html or its mirror site at http://www.staff.or.jp/giot/INE.html  相似文献   

2.
《Genomics》1999,55(1):78-87
We have developed an integrated physical mapping computer software package (IMP), originally designed to support the physical mapping of human chromosome 13 and expanded to support several gene-identification projects based on the positional candidate approach. IMP displays map data in a form that provides useful guidelines to the end users. An integrated map with high resolution and confidence is constructed from different types of mapping data, including hybridization experiments, STS-based PCR assays, genetic linkage mapping, cDNA localization, and FISH data. The map is also designed to provide suggestions for specific experiments that are required to obtain maps with even higher resolution and confidence. To this end, the optimization employs multiple constraints that take into account already established STS “scaffold” maps. This software thus serves as an important general tool kit for physical mapping, sequencing, and gene-hunting projects.  相似文献   

3.
ABSTRACT. We have converted the hierarchically organized new higher level classification of eukaryotes with emphasis on the taxonomy of protists proposed by Adl et al. into an interactive and dynamic Java applet. The current version of the applet can be accessed via http://phylogenetics.bioapps.biozentrum.uni-wuerzburg.de/etv . We use the layout from a Degree-of-Interest tree (DOITree) that effectively displays all the taxonomic information as well as the phylogenetic relationships described in the original article by Adl et al. The tree was made using the Prefuse Toolkit for interactive information visualization. All browsers capable of using Java applets will be able to view the tree. The applet is freely available for scientists, teachers, and students.  相似文献   

4.
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.  相似文献   

5.
Crop genome sequencing projects generate massive amounts of genomic sequence information, and the utilization of this information in applied crop improvement programs has been augmented by the availability of sophisticated bioinformatics tools. Here, we present the possible direct utilization of sequence data from a sorghum genome sequencing project in applied crop breeding programs. Based on sequence homology, we aligned all publicly available simple sequence repeat markers on a sequence-based physical map for sorghum. Linking this physical map with already existing linkage map(s) provides better options for applied molecular breeding programs. When a new set of markers is made available, the new markers can be first aligned on a sequence-based physical map, and those located near the quantitative trait locus (QTL) can be identified from this map, thereby reducing the number of markers to be tested in order to identify polymorphic flanking markers for the QTL for any given donor × recurrent parent combination. Polymorphic markers that are expected (on the basis of their position on the sequence-based physical map) to be closely linked to the target can be used for foreground selection in marker-assisted breeding. This map facilitates the identification of a set of markers representing the entire genome, which would provide better resolution in diversity analyses and further linkage disequilibrium mapping. Filling the gaps in existing linkage maps and fine mapping can be achieved more efficiently by targeting the specific genomic regions of interest. It also opens up new exciting opportunities for comparative mapping and for the development of new genomic resources in related crops, both of which are lagging behind in the current genomic revolution. This paper also presents a number of examples of potential applications of sequence-based physical map for sorghum.  相似文献   

6.
Utilising pulse-field gel electrophoresis physical linkage between three mouse X-linked genes has been demonstrated. The three genes, P3, G6pd and Cf-8 all lie within 400 Kb of DNA. This physical linkage mirrors the situation on the human X chromosome, representing the first demonstration of mouse/human synteny at the physical level. A detailed physical map encompassing 1.6 Mbp of this region is presented. A number of the rare cutter restriction enzyme sites within this map are partially blocked on the inactive X chromosome, presumably due to the methylation of CpG rich islands. Pulsed field gel electrophoresis therefore provides a useful tool for the study of X-inactivation over large regions of the X chromosome.  相似文献   

7.
The detailed arrangement of 563 YAC clones comprising four contigs covering ~17 Mbp of chromosome 4 is presented. YAC clones were positioned relative to each other and to markers by taking into account marker and end fragment hybridization data and the sizes of all YAC clones. This analysis made it possible to estimate physical distances between the majority of chromosome 4 markers. It also identified a relatively large number of YAC clones containing chimaeric inserts. The YAC contig map of the Columbia ecotype presents an important resource for map-based cloning experiments, rapid mapping of DNA sequences and large-scale genomic sequencing programs.  相似文献   

8.
Plant genome sequencing: applications for crop improvement   总被引:2,自引:0,他引:2  
DNA sequencing technology is undergoing a revolution with the commercialization of second generation technologies capable of sequencing thousands of millions of nucleotide bases in each run. The data explosion resulting from this technology is likely to continue to increase with the further development of second generation sequencing and the introduction of third generation single‐molecule sequencing methods over the coming years. The question is no longer whether we can sequence crop genomes which are often large and complex, but how soon can we sequence them? Even cereal genomes such as wheat and barley which were once considered intractable are coming under the spotlight of the new sequencing technologies and an array of new projects and approaches are being established. The increasing availability of DNA sequence information enables the discovery of genes and molecular markers associated with diverse agronomic traits creating new opportunities for crop improvement. However, the challenge remains to convert this mass of data into knowledge that can be applied in crop breeding programs.  相似文献   

9.
10.
11.
The DNA sequence of the human cytomegalovirus genome.   总被引:14,自引:0,他引:14  
In the first part of this article we review what has been learnt from the analysis of the sequence of HCMV. A summary of this information is presented in the form of an updated map of the viral genome. HCMV is representative of a major lineage of herpesviruses distinct from previously sequenced members of this viral family and demonstrates striking differences in genetic content and organization. The virus encodes approximately 200 genes, including nine gene families, a large number of glycoprotein genes, and homologues of the human HLA class I and G protein-coupled receptor genes. The HCMV sequence thus provides a sound basis for future molecular studies of this highly complex eukaryotic virus. The second part discusses the practical rate of DNA sequencing as deduced from this and other studies. The 229 kilobase pair DNA genome of human cytomegalovirus (HCMV) strain AD169 is the largest contiguous sequence determined to date, and as such provides a realistic benchmark for assessing the practical rate of DNA sequencing as opposed to theoretical calculations which are usually much greater. The sequence was determined manually and we assess the impact of new developments in DNA sequencing.  相似文献   

12.
13.
14.
The Mouse Genome Database (MGD) is the community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology and disease (http://www.informatics.jax.org). MGD provides standard nomenclature and consensus map positions for mouse genes and genetic markers; it provides a curated set of mammalian homology records, user-defined chromosomal maps, experimental data sets and the definitive mouse 'gene to sequence' reference set for the research community. The integration and standardization of these data sets facilitates the transition between mouse DNA sequence, gene and phenotype annotations. A recent focus on allele and phenotype representations enhances the ability of MGD to organize and present data for exploring the relationship between genotype and phenotype. This link between the genome and the biology of the mouse is especially important as phenotype information grows from large mutagenesis projects and genotype information grows from large-scale sequencing projects.  相似文献   

15.
16.
AtDB, the Arabidopsis thaliana Database, has a primary role to provide public access to the collected genomic information for A. thaliana via the World Wide Web (URL: http://genome-www.stanford. edu/ ). AtDB presents interactive physical and genetics maps that are hyperlinked with detailed information about the clones and markers placed on these maps. A large literature collection on Arabidopsis , contact information on researchers worldwide, laboratory method manuals and other information useful to plant molecular biologists are also provided. This paper discusses the database-driven clickable displays that provide easy navigation within a variety of genomic maps, including those summarizing progress of the international Arabidopsis genomic sequencing effort, AGI (the Arabidopsis Genome Initiative). The interface uses client-side hyperlinked GIF-images that direct the user to detailed database-information. A new BLAST service is also described. This gives users access to the thousands of Arabidopsis BAC clone end-sequences and includes hyperlinked images summarizing the search results. The linking of genetic and physically mapped regions and their sequence into information for loci within that region is an ongoing goal for this project.  相似文献   

17.
We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.  相似文献   

18.
The advent of massive parallel sequencing of immunopurified chromatin and its determinants has provided new avenues for researchers to map epigenome-wide changes and there is tremendous interest to uncover regulatory signatures to understand fundamental questions associated with chromatin structure and function. Indeed, the rapid development of large genome annotation projects has seen a resurgence in chromatin immunoprecipitation (ChIP) based protocols which are used to distinguish protein interactions coupled with large scale sequencing (Seq) to precisely map epigenome-wide interactions. Despite some of the great advances in our understanding of chromatin modifying complexes and their determinants, the development of ChIP-Seq technologies also pose specific demands on the integration of data for visualization, manipulation and analysis. In this article we discuss some of the considerations for experimental design planning, quality control, and bioinformatic analysis. The key aspects of post sequencing analysis are the identification of regions of interest, differentiation between biological conditions and the characterization of sequence differences for chromatin modifications. We provide an overview of best-practise approaches with background information and considerations of integrative analysis from ChIP-Seq experiments.  相似文献   

19.
Availability of the human genome sequence and high similarity between humans and pigs at the molecular level provides an opportunity to use a comparative mapping approach to piggy-BAC the human genome. In order to advance the pig genome sequencing initiative, sequence similarity between large-scale porcine BAC-end sequences (BESs) and human genome sequence was used to construct a comparatively-anchored porcine physical map that is a first step towards sequencing the pig genome. A total of 50,300 porcine BAC clones were end-sequenced, yielding 76,906 BESs after trimming with an average read length of 538 bp. To anchor the porcine BACs on the human genome, these BESs were subjected to BLAST analysis using the human draft sequence, revealing 31.5% significant hits (E < e(-5)). Both genic and non-genic regions of homology contributed to the alignments between the human and porcine genomes. Porcine BESs with unique homology matches within the human genome provided a source of markers spaced approximately 70 to 300 kb along each human chromosome. In order to evaluate the utility of piggy-BACing human genome sequences, and confirm predictions of orthology, 193 evenly spaced BESs with similarity to HSA3 and HSA21 were selected and then utilized for developing a high-resolution (1.22 Mb) comparative radiation hybrid map of SSC13 that represents a fusion of HSA3 and HSA21. Resulting RH mapping of SSC13 covers 99% and 97% of HSA3 and HSA21, respectively. Seven evolutionary conserved blocks were identified including six on HSA3 and a single syntenic block corresponding to HSA21. The strategy of piggy-BACing the human genome described in this study demonstrates that through a directed, targeted comparative genomics approach construction of a high-resolution anchored physical map of the pig genome can be achieved. This map supports the selection of BACs to construct a minimal tiling path for genome sequencing and targeted gap filling. Moreover, this approach is highly relevant to other genome sequencing projects.  相似文献   

20.
Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly) were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号