首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.  相似文献   

2.
The natural plasmid pSRQ800 isolated from Lactococcus lactis subsp. lactis W1 conferred strong phage resistance against small isometric phages of the 936 and P335 species when introduced into phage-sensitive L. lactis strains. It had very limited effect on prolate phages of the c2 species. The phage resistance mechanism encoded on pSRQ800 is a temperature-sensitive abortive infection system (Abi). Plasmid pSRQ800 was mapped, and the Abi genetic determinant was localized on a 4.5-kb EcoRI fragment. Cloning and sequencing of the 4.5-kb fragment allowed the identification of two large open reading frames. Deletion mutants showed that only orf1 was needed to produce the Abi phenotype. orf1 (renamed abiK) coded for a predicted protein of 599 amino acids (AbiK) with an estimated molecular size of 71.4 kDa and a pI of 7.98. DNA and protein sequence alignment programs found no significant homology with databases. However, a database query based on amino acid composition suggested that AbiK might be in the same protein family as AbiA. No phage DNA replication nor phage structural protein production was detected in infected AbiK+ L. lactis cells. This system is believed to act at or prior to phage DNA replication. WHen cloned into a high-copy vector, AbiK efficiency increased 100-fold. AbiK provides another powerful tool that can be useful in controlling phages during lactococcal fermentations.  相似文献   

3.
The baculovirus GP64 envelope fusion protein (GP64 EFP) is the major envelope glycoprotein of the budded virion and has been shown to mediate acid-triggered membrane fusion both in virions and when expressed alone in transfected cells. Using site-directed mutagenesis and functional assays for oligomerization, transport, and membrane fusion, we localized two functional domains of GP64 EFP. To identify a fusion domain in the GP64 EFP of the Orgyia pseudotsugata multiple nuclear polyhedrosis virus (OpMNPV), we examined two hydrophobic regions in the GP64 EFP ectodomain. Hydrophobic region I (amino acids 223 to 228) is a cluster of 6 hydrophobic amino acids exhibiting the highest local hydrophobicity in the ectodomain. Hydrophobic region II (amino acids 330 to 338) lies within a conserved region of GP64 EFP that contains a heptad repeat of leucine residues and is predicted to form an amphipathic alpha-helix. In region I, nonconservative amino acid substitutions at Leu-226 and Leu-227 (at the center of the hydrophobic cluster) completely abolished fusion activity but did not prevent GP64 EFP oligomerization or surface localization. To confirm the role of region I in membrane fusion activity, we used a synthetic 21-amino-acid peptide to generate polyclonal antibodies against region I and demonstrated that antipeptide antibodies were capable of both neutralizing membrane fusion activity and reducing infectivity of the virus. In hydrophobic region II, mutations were designed to disrupt several structural characteristics: a heptad repeat of leucine, a predicted alpha-helix, or the local hydrophobicity along one face of the helix. Single alanine substitutions for heptad leucines did not prevent oligomerization, transport, or fusion activity. However, multiple alanine substitutions or proline (helix-destabilizing) substitutions disrupted both oligomerization and transport of GP64 EFP. In addition, a deletion that removed region II and the predicted alpha-helix was defective for oligomerization, whereas a larger deletion that retained region II and the predicted helix was oligomerized. These results indicate that region II is required for oligomerization and transport and suggest that the predicted helical structure of this region may be important for this function. Thus, by using mutagenesis, functional assays, and antibody inhibition, two functional domains were localized within the baculovirus GP64 EFP: a fusion domain located at amino acids 223 to 228 and an oligomerization domain located at amino acids 327 to 335 within a predicted amphipathic alpha-helix.  相似文献   

4.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   

5.
Leucine zippers are oligomerization domains used in a wide range of proteins. Their structure is based on a highly conserved heptad repeat sequence in which two key positions are occupied by leucines. The leucine zipper of the cell cycle-regulated Nek2 kinase is important for its dimerization and activation. However, the sequence of this leucine zipper is most unusual in that leucines occupy only one of the two hydrophobic positions. The other position, depending on the register of the heptad repeat, is occupied by either acidic or basic residues. Using NMR spectroscopy, we show that this leucine zipper exists in two conformations of almost equal population that exchange with a rate of 17 s(-1). We propose that the two conformations correspond to the two possible registers of the heptad repeat. This hypothesis is supported by a cysteine mutant that locks the protein in one of the two conformations. NMR spectra of this mutant showed the predicted 2-fold reduction of peaks in the (15)N HSQC spectrum and the complete removal of cross peaks in exchange spectra. It is possible that interconversion of these two conformations may be triggered by external signals in a manner similar to that proposed recently for the microtubule binding domain of dynein and the HAMP domain. As a result, the leucine zipper of Nek2 kinase is the first example where the frameshift of coiled-coil heptad repeats has been directly observed experimentally.  相似文献   

6.
Gel-filtration experiments indicate that a peptide (P2) composed of the basic region of GCN4 fused to the leucine heptad repeats of Lac repressor forms tetrameric aggregates. Gel-shift experiments were performed to determine the orientation of the helices in the tetrameric P2 aggregate. Sandwich-complex formation of peptide P2 with two DNA fragments containing two symmetrical CRE binding sites (5'-ATGACGTCAT-3') at a distance of 21 bp suggests antiparallel aggregation of the Lac leucine heptad repeats. Thus, we conclude that the leucine heptad repeats of Lac repressor have the ability to form homomeric 4-helical bundles with an antiparallel arrangement of the helices. This topology enables the two DNA fragments in the sandwich complexes to be held together by two tetramers of peptide P2. Replacement of the uncharged amino acids of the helical g and e positions of peptide P2 by the corresponding charged residues of GCN4 (peptide P4) results in a dimeric and parallel aggregation of the leucine heptad repeats, and consequently abolishes the potential to form sandwich structures. Similarly, a hybrid Lac repressor in which the GCN4 leucine zipper replaces the natural Lac leucine heptad repeats forms dimers only. It regains the ability to form tetramers when the charged amino acids in helical positions g and e are replaced by uncharged alanines.  相似文献   

7.
Bacteriophage sk1 is a small isometric-headed lytic phage belonging to the 936 species. It infects Lactococcus lactis , a commonly used dairy starter organism. Nucleotide sequence data analysis indicated that the sk1 genome is 28 451 nucleotides long and contains 54 open reading frames (ORFs) of 30 or more codons, interspersed with three large intergenic regions. The nucleotide sequence of several of the sk1 ORFs demonstrated significant levels of identity to genes (many encoding proteins of unknown function) in other lactococcal phages of both small isometric-headed and prolate-headed morphotype. Based on this identity and predicted peptide structures, sk1 genes for the terminase, major structural protein and DNA polymerase have been putatively identified. Genes encoding holin and lysin were also identified, subcloned into an Escherichia coli expression vector, and their function demonstrated in vivo . The sk1 origin of replication was located by identifying sk1 DNA fragments able to support the maintenance in L. lactis of a plasmid lacking a functional Gram-positive ori . The minimal fragment conferring replication origin function contained a number of direct repeats and 179 codons of ORF47. Although no similarity between phage sk1 and coliphage λ at the nucleotide or amino acid sequence level was observed, an alignment of the sk1 late region ORFs with the λ structural and packaging genes revealed a striking correspondence in both ORF length and isoelectric point of the ORF product. It is proposed that this correspondence is indicative of a strong conservation in gene order within these otherwise unrelated isometric-headed phages that can be used to predict the functions of the sk1 gene products.  相似文献   

8.
Sixteen lytic bacteriophages that infect Pseudomonas tolaasii LMG 2342(T) were isolated from smashed sporocarps of oyster mushroom (Pleurotus ostreatus) showing necrotic symptoms. On the basis of the host range investigation of the phages, they have wide infection abilities against the genus Pseudomonas, mainly in the case of phages Bf3, Bf7, Bf10, and Bf15. Molecular investigations have revealed that they all have dsDNA genomes about 40?kbp in size. Identical restriction patterns resulting from restriction enzyme analysis suggest that the isolates probably belong to the same phage species. However, there was a difference between these phage isolates in their infecting abilities. Phage isolate Bf7 was investigated and characterized more deeply. Morphological characterization of Bf7 by transmission electron microscopy (TEM) has shown that it has a short, noncontractile tail, an icosahedral phage head, and the size is about 60?nm in diameter, suggesting that it belongs to the Podoviridae family. Complete genome sequence analysis of the Bf7 phage isolate revealed a 40?058?bp genome, 58.4% G+C content, 46 open reading frames encoding different proteins showing homology to proteins of the bacteriophage Caulobacter crescentus φCd1 from the Podoviridae family. On the basis of these results and comparative genomic studies, we classified the Bf7 phage to the subfamily of Autographivirinae, φKMV-like phages.  相似文献   

9.
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus   总被引:4,自引:0,他引:4  
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.  相似文献   

10.
Comparative studies were made on the generalized transducing bacteriophages of Proteus mirabilis φm (Nakaya and Rownd), π1 (Böhme), and a clear plaque-forming mutant φm-c, derived from φm. Electron microscopic observations revealed that these phages were morphologically identical, indicating that they belonged to the group C of Bradley's classification, or to the type Cl of Ackermann's classification. Phages φm and π1 formed characteristic turbid plaques different from each other, and the plaques of π1 were smaller in size than those of φm. The plaques of phage φm-c were clear and also were the largest in size among those studied. Average latent periods of φm and π1 were 70 and 60 min, respectively. Average burst size was found to be 30 and 10 plaque-forming units per infected cell for φm and π1, respectively. It was confirmed by cross neutralization tests that φm and π1 differed serologically from each other. The host range of the two phages also differed, and phage φm was more sensitive to heat than π1. These results indicate that phages φm and π1 are different types of phages. Majority of the properties of phage φm-c were nearly identical with those of phage π1 except that the multiplication of φm-c was more strongly inhibited by methylene blue than that of φm and π1. Phage φm-c is considered to be a clear mutant of φm.  相似文献   

11.
Assembly of the lactose repressor tetramer involves two subunit interfaces, the C-terminal heptad repeats, and the monomer-monomer interface. Dimerisation between two monomers of Lac repressor of Escherichia coli lacking the two C-terminal heptad repeats occurs through the interactions between three alpha-helices of each monomer, which form a highly hydrophobic interface. Residues possibly involved in specific dimer formation are known from X-ray studies and from the phenotypes of more than 4000 single amino acid substitutions. During the examination of numerous mutants within the dimerisation interface of Lac repressor, we found that substitution of one amino acid, D278 to leucine, is sufficient to change the specificity of dimerisation. Analysis of this single substitution indicates that D278L mutant Lac repressor represses like wild-type. However, it no longer forms heterodimers with wild-type Lac repressor.  相似文献   

12.
φEf11 is a temperate Siphoviridae bacteriophage isolated by induction from a lysogenic Enterococcus faecalis strain. The φEf11 DNA was completely sequenced and found to be 42,822 bp in length, with a G+C mol% of 34.4%. Genome analysis revealed 65 ORFs, accounting for 92.8% of the DNA content. All except for seven of the ORFs displayed sequence similarities to previously characterized proteins. The genes were arranged in functional modules, organized similar to that of several other phages of low GC Gram-positive bacteria; however, the number and arrangement of lysis-related genes were atypical of these bacteriophages. A 159 bp noncoding region between predicted cI and cro genes is highly similar to the functionally characterized early promoter region of lactococcal temperate phage TP901-1, and possessed a predicted stem-loop structure in between predicted P(L) and P(R) promoters, suggesting a novel mechanism of repression of these two bacteriophages from the λ paradigm. Comparison with all available phage and predicted prophage genomes revealed that the φEf11 genome displays unique features, suggesting that φEf11 may be a novel member of a larger family of temperate prophages that also includes lactococcal phages. Trees based on the blast score ratio grouped this family by tail fiber similarity, suggesting that these trees are useful for identifying phages with similar tail fibers.  相似文献   

13.
Dimerization of leucine zippers analyzed by random selection.   总被引:7,自引:1,他引:6       下载免费PDF全文
W T Pu  K Struhl 《Nucleic acids research》1993,21(18):4348-4355
The leucine zipper is a coiled coil that mediates specific dimerization of bZIP DNA-binding domains. A hydrophobic spine involving the conserved leucines runs down the coiled-coil and is thought to stabilize the dimer. We used the method of random selection to further define the primary sequence requirements for homodimer formation and heterodimer formation with Fos. When positions on either side of the hydrophobic spine of GCN4 are diversified to include the corresponding residues of Jun, a large percentage of the resulting sequences form homodimers, and a large percentage form heterodimers with Fos. Basic residues were preferred, but not essential, at position e of zippers which heterodimerize with Fos. When random sequences containing 5 heptad repeat of leucines are subject to a selection for homodimer formation, a diverse set of sequences is isolated. Certain residues are preferred at each position in the heptad repeat, although no essential primary sequence determinants could be identified. No pair of residues not involving the conserved leucines could be identified which strongly promotes homodimerization. These results suggest that factors determining leucine zipper dimerization are complex, with numerous interactions contributing to the association.  相似文献   

14.
15.
The carboxyl-terminal sequence of the lac repressor protein contains heptad repeats of leucines at positions 342, 349, and 356 that are required for tetramer assembly, as substitution of these leucine residues yields solely dimeric species (Chakerian, A. E., Tesmer, V. M., Manly, S. P., Brackett, J. K., Lynch, M. J., Hoh, J. T., and Matthews, K. S. (1991) J. Biol. Chem. 266, 1371-1374; Alberti, S., Oehler, S., von Wilcken-Bergmann, B., Kr?mer, H., and Müller-Hill, B. (1991) New Biol. 3, 57-62). To further investigate this region, which may form a leucine zipper motif, a family of lac repressor carboxyl-terminal deletion mutants eliminating the last 4, 5, 11, 18, and 32 amino acids (aa) has been constructed. The -4 aa mutant, in which all of the leucines in the presumed leucine zipper are intact, is tetrameric and displays operator and inducer binding properties similar to wild-type repressor. The -5 aa, -11 aa, -18 aa, and -32 aa deletion mutants, depleted of 1, 2, or all 3 of the leucines in the heptad repeats, are all dimeric, as demonstrated by gel filtration chromatography. Circular dichroism spectra and protease digestion studies indicate similar secondary/tertiary structures for the mutant and wild-type proteins. Differences in reaction with a monoclonal antibody specific for a subunit interface are observed for the dimeric versus tetrameric proteins, indicative of exposure of the target epitope as a consequence of deletion. Inducer binding properties of the deletion mutants are similar to wild-type tetrameric repressor at neutral pH. Only small differences in affinity and cooperativity from wild-type are evident at elevated pH; thus, the cooperative unit within the tetramer appears to be the dimer. "Apparent" operator binding affinity for the dimeric proteins is diminished, although minimal change in operator dissociation rate constants was observed. The diminution in apparent operator affinity may therefore derive from either 1) dissociation of the dimeric mutants to monomer generating a linked equilibrium or 2) alterations in intrinsic operator affinity of the dimers; the former explanation is favored. This detailed characterization of the purified mutant proteins confirms that the carboxyl-terminal region is involved in the dimer-dimer interface and demonstrates that cooperativity for inducer binding is contained within the dimer unit of the tetramer structure.  相似文献   

16.
A leucine residue at position 370 (L370) in 29-4 Shaker K+ channels resides within two overlapping sequence motifs conserved among most voltage-gated channels: the S4 segment and a leucine heptad repeat. Here we investigate the effects observed upon substitution of L370 with many other uncharged amino acid residues. We find that smaller or more hydrophilic residues produce greater alterations in both activation and inactivation gating than does substitution with other large hydrophobic residues. In addition, subunits containing less conservative substitutions at position 370 are restricted in their assembly with wild-type subunits and are unlikely to form homomultimeric channel complexes. Consistent with the idea that L370 influences the tertiary structure of these channels, the results indicate that L370 undergoes specific hydrophobic interactions during the conformational transitions of gating; similar interactions may take place during the folding, insertion, or assembly of Shaker K+ channel subunits.  相似文献   

17.
The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium–phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey–predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy.  相似文献   

18.
In recent years, antimicrobial-resistant Pseudomonas aeruginosa strains have increased in the veterinary field. Therefore, phage therapy has received significant attention as an approach for overcoming antimicrobial resistance. In this context, we isolated and characterized four Pseudomonas bacteriophages. Phylogenetic analysis showed that the isolated phages are novel Myoviridae Pbunavirus PB1-like phages with ØR12 belonging to a different clade compared with the other three. These phages had distinct lytic activity against 22 P. aeruginosa veterinary isolates. The phage cocktail composed from the PB1-like phages clearly inhibited the occurrence of the phage-resistant variant, suggesting that these phages could be useful in phage therapy.  相似文献   

19.
The epidemic community-associated methicillin-resistant clone Staphylococcus aureus USA300 is a major source of skin and soft tissue infections and involves strains with a diverse set of resistance genes. In this study, we report efficient transduction of penicillinase and tetracycline resistance plasmids by bacteriophages φ80α and φJB between clinical isolates belonging to the USA300 clone. High transduction frequencies (10(-5) - 10(-6) CFU/PFU) were observed using phages propagated on donor strains as well as prophages induced from donors by ultraviolet light. Quantitative real-time PCR was employed to detect penicillinase plasmids in transducing phage particles and determine the ratio of transducing particles in phage lysates to infectious phage particles (determined as approximately 1 : 1700). Successful transfer of plasmids between strains in USA300 clone proves transduction is an effective mechanism for spreading plasmids within the clone. Such events contribute to its evolution and to emergence of new multiple drug-resistant strains of this successful clone.  相似文献   

20.
The aim of this work was to identify genes responsible for host recognition in the lactococcal phages sk1 and bIL170 belonging to species 936. These phages have a high level of DNA identity but different host ranges. Bioinformatic analysis indicated that homologous genes, orf18 in sk1 and orf20 in bIL170, could be the receptor-binding protein (RBP) genes, since the resulting proteins were unrelated in the C-terminal part and showed homology to different groups of proteins hypothetically involved in host recognition. Consequently, chimeric bIL170 phages carrying orf18 from sk1 were generated. The recombinant phages were able to form plaques on the sk1 host Lactococcus lactis MG1614, and recombination was verified by PCR analysis directly with the plaques. A polyclonal antiserum raised against the C-terminal part of phage sk1 ORF18 was used in immunogold electron microscopy to demonstrate that ORF18 is located at the tip of the tail. Sequence analysis of corresponding proteins from other lactococcal phages belonging to species 936 showed that the N-terminal parts of the RBPs were very similar, while the C-terminal parts varied, suggesting that the C-terminal part plays a role in receptor binding. The phages investigated could be grouped into sk1-like phages (p2, fd13, jj50, and phi 7) and bIL170-like phages (P008, P113G, P272, and bIL66) on the basis of the homology of their RBPs to the C-terminal part of ORF18 in sk1 and ORF20 in bIL170, respectively. Interestingly, sk1-like phages bind to and infect a defined group of L. lactis subsp. cremoris strains, while bIL170-like phages bind to and infect a defined group of L. lactis subsp. lactis strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号