首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Caenorhabditis elegans and Artemia T4 globin sequences are highly homologous with other invertebrate globins. The intron/exon patterns of their genes display a single intron in the E and G helices respectively. Precoding introns in multirepeat globins are inserted in homologous positions. Comparison of the intron/exon patterns in the known globin gene sequences demonstrates that they are more diverse than first expected but nevertheless can be derived from an ancestral pattern having 3 introns and 4 exons.  相似文献   

2.
The cDNAs encoding two dimeric hemoglobins, Hbs I and II, of the deep-sea clam Calyptogena soyoae were amplified by PCR and the complete nucleotide sequences determined. The cDNA-derived amino acid sequences agreed completely with those determined chemically. Many of the molluscan intracellular globin genes have a characteristic four-exon/three-intron structure, with the precoding and two conventional introns conserved widely in animal globin genes. In this work we have determined the exon/intron organization of two hemoglobin genes of the deep-sea clam C. soyoae. Surprisingly, this gene has no precoding intron but instead contains an additional intron in the A-helix (A3.1), together with the two conventional introns (B12.2 and G6.3). This observation suggests that the precoding intron has been lost and the insertion of intron in A-helix occurred in the genes of Calyptogena. Alternatively, the sliding of intron from precoding to A-helix might have occurred.  相似文献   

3.
Gene structure data can substantially advance our understanding of metazoan evolution and deliver an independent approach to resolve conflicts among existing hypotheses. Here, we used changes of spliceosomal intron positions as novel phylogenetic marker to reconstruct the animal tree. This kind of data is inferred from orthologous genes containing mutually exclusive introns at pairs of sequence positions in close proximity, so-called near intron pairs (NIPs). NIP data were collected for 48 species and utilized as binary genome-level characters in maximum parsimony (MP) analyses to reconstruct deep metazoan phylogeny. All groupings that were obtained with more than 80% bootstrap support are consistent with currently supported phylogenetic hypotheses. This includes monophyletic Chordata, Vertebrata, Nematoda, Platyhelminthes and Trochozoa. Several other clades such as Deuterostomia, Protostomia, Arthropoda, Ecdysozoa, Spiralia, and Eumetazoa, however, failed to be recovered due to a few problematic taxa such as the mite Ixodes and the warty comb jelly Mnemiopsis. The corresponding unexpected branchings can be explained by the paucity of synapomorphic changes of intron positions shared between some genomes, by the sensitivity of MP analyses to long-branch attraction (LBA), and by the very unequal evolutionary rates of intron loss and intron gain during evolution of the different subclades of metazoans. In addition, we obtained an assemblage of Cnidaria, Porifera, and Placozoa as sister group of Bilateria + Ctenophora with medium support, a disputable, but remarkable result. We conclude that NIPs can be used as phylogenetic characters also within a broader phylogenetic context, given that they have emerged regularly during evolution irrespective of the large variation of intron density across metazoan genomes.  相似文献   

4.
The cDNAs encoding two dimeric hemoglobins, Hbs I and II, of the deep-sea clam Calyptogena soyoae were amplified by PCR and the complete nucleotide sequences determined. The cDNA-derived amino acid sequences agreed completely with those determined chemically. Many of the molluscan intracellular globin genes have a characteristic four-exon/three-intron structure, with the precoding and two conventional introns conserved widely in animal globin genes. In this work we have determined the exon/intron organization of two hemoglobin genes of the deep-sea clam C. soyoae. Surprisingly, this gene has no precoding intron but instead contains an additional intron in the A-helix (A3.1), together with the two conventional introns (B12.2 and G6.3). This observation suggests that the precoding intron has been lost and the insertion of intron in A-helix occurred in the genes of Calyptogena. Alternatively, the sliding of intron from precoding to A-helix might have occurred.  相似文献   

5.
The organization of non-vertebrate globin genes exhibits substantially more variability than the three-exon, two-intron structure of the vertebrate globin genes. (1) The structures of genes of the single-domain globin chains of the annelid Lumbricus and the mollusc Anadara, and the globin gene coding for the two-domain chains of the clam Barbatia, are similar to the vertebrate plan. (2) Genes for single-domain chains exist in bacteria and protozoa. Although the globin gene is highly expressed in the bacterium Vitreoscilla, the putative globin gene hmp in E. coli, which codes for a chimeric protein whose N-terminal moiety of 139 residues contains 67 residues identical to the Vitreoscilla globin, may be either unexpressed or expressed at very low levels, despite the presence of normal regulatory sequences. The DNA sequence of the globin gene of the protozoan Paramecium, determined recently by Yamauchi and collaborators, appears to consist of two exons separated by a short intron. (3) Among the lower eukaryotes, the yeasts Saccharomyces and Candida have chimeric proteins consisting of N-terminal globin and C-terminal flavoprotein moieties of about the same size. The structure of the gene for the chimeric protein of Saccharomyces exhibits no introns. According to Riggs, the presence of chimeric proteins in E. coli and other prokaryotes, such as Alcaligenes and Rhizobium, as well as in yeasts, suggests a previously unrecognized evolutionary pathway for hemoglobin, namely that of a multipurpose heme-binding domain attached to a variety of unrelated proteins with diverse functions. (4) The published globin gene sequences of the insect larva Chironomus have an intron-less structure and are present as clusters of multiple copies; the expression of the globin genes is tissue and developmental stage-specific. Furthermore, the expression of many of these genes has not yet been demonstrated despite the presence of apparently normal regulatory sequences in the two flanking regions. Unexpectedly, Bergtrom and collaborators have recently shown that at least three Ctt globin II beta genes contain putative introns. (5) Pohajdak and collaborators have found a seven-exon and six-intron structure for the globin gene of the nematode Pseudoterranova which codes for a two-domain globin chain. Although the second and fourth introns of the N-terminal domain correspond to the two introns found in vertebrate globin genes, the position of the third intron is close to that of the central intron in plant hemoglobins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
8.
Samia cynthia ricini is a commercial silk-producing insect that is now reared year-round in Korea, with the expectation of being utilized for diverse purposes. In this report, we present the complete mitochondrial genome (mitogenome) of S. c. ricini. The 15,384-bp long S. cynthia ricini mitogenome was amplified into 26 short fragments using three long overlapping fragments using primers designed from reported lepidopteran mitogenome sequences. The genome comprises 37 genes (13 protein-coding genes, two rRNA genes, and 22 tRNA genes), and one large non-coding region termed the A + T-rich region. The A/T content of the third codon position was 91.7%, which was 18.8% and 21.6% higher than those of first and second codon positions, respectively. The high A/T content in the genome is reflected in codon usage, accounting for 39.5% of A/T-composed codons (TTA, ATT, TTT, and ATA). Unlike a previous report on the start codon for the COI gene, the S. c. ricini COI gene commences with a typical ATT codon. A total of 221 bp of non-coding sequences are dispersed in 17 regions, ranging in size from 1 to 54 bp, which comprise 1.4% of the total genome. One of the non-coding sequence located between tRNAGln and ND2 (54 bp) has 77% sequence homology with the 5′-sequence of the neighboring ND2 gene, suggesting partial duplication of the sequence during evolution. The 361-bp long A + T-rich region contains an 18 bp-long poly-T stretch, ATAGA motif, ATTTA element, microsatellite-like A/T sequence, poly-A stretch and one tRNA-like sequence, as typically found in Lepidoptera including Bombycoidea.  相似文献   

9.
Amazonian rivers function as important barriers to dispersal of Amazonian birds. Studying population genetics of lineages separated by rivers may help us to uncover the dynamics of biological diversification in the Amazon. We reconstructed the phylogeography of the Wedge-billed Woodcreeper, Glyphorynchus spirurus (Furnariidae) in the Amazon basin. Sampling included 134 individuals from 63 sites distributed in eight Amazonian areas of endemism separated by major Amazonian rivers. Nucleotide sequences were generated for five genes: two mtDNA genes (1047 bp for cyt b and 1002 bp for ND2) and three nuclear genes (647 bp from the sex-linked gene ACO, 319 bp from the intron of G3PDH, and 619 bp from intron 2 of MYO). In addition, 37 individuals were randomly selected from the Rondônia and Inambari areas of endemism for genomic fingerprinting, using five ISSR primers. Our results reveal allopatric and well-supported lineages within G. spirurus with high levels of genetic differentiation (p-distances 0.9–6.3%) across opposite banks of major Amazonian rivers. The multilocus phylogenetic reconstructions obtained reveal several incongruences with current subspecies taxonomy. Within currently recognized subspecies, we found high levels of both paraphyly and genetic differentiation, indicating deep divergences and strong isolation consistent with species-level differences. ISSR fingerprinting supports the existence of genetically differentiated populations on opposite sides of the Madeira River. Molecular dating suggests an initial vicariation event isolating populations from the Guiana center of endemism during the Late Miocene/Early Pliocene, while more recent events subdivided Brazilian Shield populations during the Lower Pleistocene.  相似文献   

10.
11.
Catalase (EC 1.11.1.6) is an antioxidant enzyme involved in redox equilibrium, regulating hydrogen peroxide (H2O2) concentration, a harmful reactive oxygen species (ROS) that is produced during hypoxia. Hypoxia occurs commonly in aquatic environments and in shrimp farms. We studied the catalase gene of the shrimp Litopenaeus vannamei and tested its expression and enzyme activity during hypoxia (1.5 mg/L O2; 6 and 24 h) and reoxygenation (1 h after hypoxia). The complete gene is 2974 bp long and has four introns of 821, 223, 114 and 298 bp, respectively. The first intron has tree microsatellites, with GT and (T)AT(GT) repeated sequences. L. vannamei catalase is part of an invertebrate clade including crustaceans and rotifers. Catalase expression and activity is different in gills and hepatopancreas. Expression in gills increased 3.2 and 3-fold in response to hypoxia and reoxygenation (6 and 24 h hypoxia, followed by 1 h reoxygenation) compared to normoxia, while no differences were detected in the expression and activity in hepatopancreas. Catalase activity in gills had a contrary response to expression in hypoxia and reoxygenation.  相似文献   

12.
The coelomic hemoglobin of Amphitrite ornata, termed dehaloperoxidase (DHP), is the first known multifunctional catalytic globin to possess biologically-relevant peroxidase and peroxygenase activities. Although the two isoenzymes of DHP, A and B, differ in sequence by only 5 amino acids out of 137 residues, DHP B consistently exhibits a greater activity than isoenzyme A. To delineate the contributions of each amino acid substitution to the activity of either isoenzyme, the substitutions of the five amino acids were systematically investigated, individually and in combination, using 22 mutants. Biochemical assays and mechanistic studies demonstrated that the mutants that only contained the I9L substitution showed increased i) kcat values (peroxidase activity), ii) 5-Br-indole conversion and binding affinity (peroxygenase activity), and iii) rate of Compound ES formation (enzyme activation). Whereas the X-ray structures of the oxyferrous forms of DHP B (L9I) (1.96 Å), DHP A (I9L) (1.20 Å), and WT DHP B (1.81 Å) showed no significant differences, UV–visible spectroscopy (ASoret/A380 ratio) revealed that the I9L substitution increased the 5-coordinate high-spin heme population characterized by the “open” conformation (i.e., distal histidine swung out of the pocket), which likely favors substrate binding. The positioning of the distal histidine closer to the heme cofactor in the solution state also appears to facilitate activation of DHP via the Compound ES intermediate. Taken together, the studies undertaken here shed light on the structure-function relationship in dehaloperoxidase, but also help to establish the foundation for understanding how enzymatic activity can be tuned in isoenzymes of a multifunctional catalytic globin.  相似文献   

13.
14.
The complete nucleotide sequence of the mitochondrial genome of the clam Meretrix lusoria (Bivalvia: Veneridae) was determined. It comprises 20,268 base pairs (bp) and contains 13 protein-coding genes, including ATPase subunit 8 (atp8), two ribosomal RNAs, 22 transfer RNAs, and a non-coding control region. The atp8 encodes a protein of 39 amino acids. All genes are encoded on the same strand. A putative control region (CR or D-loop) was identified in the major non-coding region (NCR) between the tRNAGly and tRNAGln. A 1087 bp tandem repeat fragment was identified that comprises nearly 11 copies of a 101 bp motif and accounts for approximately 41% of the NCR. The 101 bp tandem repeat motif of the NCR can be folded into a stem–loop secondary structure. Samples of eight individuals from Hainan and Fujian provinces were collected and their NCR regions were successfully amplified and sequenced. The data revealed a highly polymorphic VNTR (variable number of tandem repeats) associated with high levels of heteroplasmy in the D-loop region. The size of the CR ranged from 1942 to 3354 bp depending upon the copy number of the repeat sequence.  相似文献   

15.
16.
17.
Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190 ± 50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461 ± 46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409 ± 3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15–16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4 ± 1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14–15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.  相似文献   

18.
《Gene》1998,215(2):445-452
Four polyubiquitin genes, PUB1, PUB2, PUB3 and PUB4, were isolated from a pea (Pisum sativum L. cv Alaska) genomic library and completely sequenced. They represent all of the four polyubiquitin genes of the ubiquitin gene family in pea. The coding regions of the genes contain five or six coding units arranged as tandem repeats. The different coding repeats of the four genes share homologies between 75 and 97%, encoding the same protein of 76 amino acids identical to those from other higher plants. The open reading frames of PUB1, PUB2 and PUB4 terminate in the additional amino acid, phenylalanine (F), and PUB3 terminates in isoleucine (I). The polyubiquitin genes all contain intron sequences ranging from 584 to 1114 bp immediately 5′ to the ATG initiation codon of the first coding sequence. Of the four genes, three are associated with long AT-rich (85.4–89.4% A+T) sequences ranging from about 331 to 478 bp at their 5′ or 3′ ends. The PUB4 gene was found to be linked to a moderate to highly repetitive DNA at its 5′ flanking sequence. The greater sequence homology between different genes than among individual repeating units of a gene suggests that the polyubiquitin genes may have arisen by gene duplication of a single gene sequence.  相似文献   

19.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain Dazao (Lepidoptera: Bombycidae) was determined to be 15,653 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a A + T-rich region. It has the typical gene organization and order of mitogenomes from lepidopteran insects. The AT skew of this mitogenome was slightly positive and the nucleotide composition was also biased toward A + T nucleotides (81.31%). All PCGs were initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which was initiated by CGA. The cox1 and cox2 genes had incomplete stop codons consisting of just a T. All the tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The A + T-rich region of the mitogenome was 495 bp in length and consisted of several features common to the lepidopteras. Phylogenetic analysis showed that the B. mori Dazao was close to Bombycidae.  相似文献   

20.
The complete mitochondrial genome plays an important role in the accurate inference of phylogenetic relationships among metazoans. Mactridae, also known as trough shells or duck clams, is an important family of marine bivalve clams in the order Veneroida. Here we present the complete mitochondrial genome sequence of the Xishishe Coelomactra antiquata (Mollusca: Bivalvia), which is the first representative from the family Mactridae. The mitochondrial genome of C. antiquata is of 17,384 bp in length, and encodes 35 genes, including 12 protein-coding, 21 transfer RNA, and 2 ribosomal RNA genes. Compared with the typical gene content of animal mitochondrial genomes, atp8 and tRNAS2 are missing. Gene order of the mitochondrial genome of C. antiquata is unique compared with others from Veneroida. In the mitochondrial genome of the C. antiquata, a total of 2189 bp of non-coding nucleotides are scattered among 26 non-coding regions. The largest non-coding region contains one section of tandem repeats (99 bp × 11), which is the second largest tandem repeats found in the mitochondrial genomes from Veneroida. The phylogenetic trees based on mitochondrial genomes support the monophyly of Veneridae and Lucinidae, and the relationship at the family level: ((Veneridae + Mactridae) + (Cardiidae + Solecurtidae)) + Lucinidae. The phylogenetic result is consistent with the morphological classification. Meanwhile, bootstrap values are very high (BP = 94–100), suggesting that the evolutionary relationship based on mitochondrial genomes is very reliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号