首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determining the activity of viral and cellular regulatory elements in B or T lymphoid cell lines would facilitate appropriate utilization of the regulatory sequences for gene transfer- and expression-dependent applications. We have compared the activity of the CMV, RSV and SV40 viral promoter/enhancers as well as the Vlambda1 cellular promoter, in three B cell lines (REH, SMS-SB, C3P), three T cell lines (CEM, Jurkat, ST-F10), and two non-lymphoid cell lines (K-562, HeLa) using the luciferase reporter gene. In B cell lines, the activity of the CMV promoter/enhancer construct was the highest ranging from 10- to 113-fold greater than that of SV40. In contrast, in T cell lines the RSV promoter/enhancer activity was 11-65-fold higher than that of SV40. The Vlambda1 promoter activity was close to that of SV40 promoter/enhancer in most of the cell lines tested. We conclude that CMV and RSV promoter/enhancers contain stronger regulatory elements than do the SV40 and Vlambda1 for expression of genes in lymphoid cell lines.  相似文献   

2.
The genetic control of skeletal muscle differentiation at the onset of myogenesis in the embryo is relatively well understood compared to the formation of muscle during the fetal period giving rise to the bulk of skeletal muscle fibers at birth. The Mlc1f/3f (Myl1) locus encodes two alkali myosin light chains, Mlc1f and Mlc3f, from two promoters that are differentially regulated during development. The Mlc1f promoter is active in embryonic, fetal and adult fast skeletal muscle whereas the Mlc3f promoter is upregulated during fetal development and remains on in adult fast skeletal muscle. Two enhancer elements have been identified at the mammalian Mlc1f/3f locus, a 3′ element active at all developmental stages and an intronic enhancer activated during fetal development. Here, using transgenesis, we demonstrate that these enhancers act combinatorially to confer the spatial, temporal and quantitative expression profile of the endogenous Mlc3f promoter. Using double reporter transgenes we demonstrate that each enhancer can activate both Mlc1f and Mlc3f promoters in vivo, revealing enhancer sharing rather than exclusive enhancer-promoter interactions. Finally, we demonstrate that the fetal activated enhancer contains critical E-box myogenic regulatory factor binding sites and that enhancer activation is impaired in vivo in the absence of myogenin but not in the absence of innervation. Together our observations provide insights into the regulation of fetal myogenesis and the mechanisms by which temporally distinct genetic programs are integrated at a single locus.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Fine regulation of complex gene loci in higher eukaryotes is realized through the interaction of promoters with enhancers and repressors, which can be located long distance from the promoter regulated. A question arises, what mechanisms determine proper contacts between the regulatory elements over large distances in the genome. It is suggested that the important role in this process is played by a special class of regulatory elements, insulators, which block the interaction of enhancer and promoter, if they are positioned between them. Furthermore, enhancers do not directly inactivate the activities of enhancer and promoter. Nevertheless, an enhancer, isolated from one of the promoters by an insulator, can activate another, not isolated promoter. The best studied insulator of Drosophila melanogaster was found in the 5′ regulatory region of retrotransposon MDG4. It consists of 12 binding sites for the Su(Hw) protein, which is critical for the activity of this insulator. It was demonstrated that Su(Hw) insulator could protect the gene expression from the negative influence of heterochromatin and from repression, induced by the Polycomb group proteins (Pc proteins). In the present study, it was demonstrated that in transgenic lines, two or three copies of the Su(Hw) insulator could determine the interaction of the miniwhite enhancer and Pc dependant silencer with the miniwhite promoter. Thus, it was first demonstrated that insulators could participate in the regulation of the contacts between promoter and functionally opposite elements, responsible for either gene activation, or repression. Original Russian Text ? M.V. Kostyuchenko, E.E. Savitskaya, M.N. Krivega, P.G. Georgiev, 2008, published in Genetika, 2008, Vol. 44, No. 12, pp. 1693–1697.  相似文献   

11.
12.
The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.  相似文献   

13.
14.
15.
16.
17.
18.
A systematic approach is described for analysis of evolutionarily conserved cis-regulatory DNA using cis-Decoder, a tool for discovery of conserved sequence elements that are shared between similarly regulated enhancers. Analysis of 2,086 conserved sequence blocks (CSBs), identified from 135 characterized enhancers, reveals most CSBs consist of shorter overlapping/adjacent elements that are either enhancer type-specific or common to enhancers with divergent regulatory behaviors. Our findings suggest that enhancers employ overlapping repertoires of highly conserved core elements.  相似文献   

19.
20.
The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号