首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two α subunits and four β subunits with the structure of a double β-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (α1, α2, β1, and β2) from T. KS-1. All of them (α1-β1, α2-β1, α1-β2, and α2-β2) exist as α2β4 heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the β1 subunit interacted with the chaperonins more strongly than those with the β2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.  相似文献   

2.
3.
Archaea-specific radA primers were used with PCR to amplify fragments of radA genes from 11 cultivated archaeal species and one marine sponge tissue sample that contained essentially an archaeal monoculture. The amino acid sequences encoded by the PCR fragments, three RadA protein sequences previously published (21), and two new complete RadA sequences were aligned with representative bacterial RecA proteins and eucaryal Rad51 and Dmc1 proteins. The alignment supported the existence of four insertions and one deletion in the archaeal and eucaryal sequences relative to the bacterial sequences. The sizes of three of the insertions were found to have taxonomic and phylogenetic significance. Comparative analysis of the RadA sequences, omitting amino acids in the insertions and deletions, shows a cladal distribution of species which mimics to a large extent that obtained by a similar analysis of archaeal 16S rRNA sequences. The PCR technique also was used to amplify fragments of 15 radA genes from uncultured natural sources. Phylogenetic analysis of the amino acid sequences encoded by these fragments reveals several clades with affinity, sometimes only distant, to the putative RadA proteins of several species of Crenarcheota. The two most deeply branching archaeal radA genes found had some amino acid deletion and insertion patterns characteristic of bacterial recA genes. Possible explanations are discussed. Finally, signature codons are presented to distinguish among RecA protein family members.  相似文献   

4.
Chaperonins are ubiquitously present protein complexes, which assist the proper folding of newly synthesized proteins and prevent aggregation of denatured proteins in an ATP-dependent manner. They are classified into group I (bacterial, mitochondrial, chloroplast chaperonins) and group II (archaeal and eukaryotic cytosolic variants). However, both of these groups do not include recently discovered viral chaperonins. Here, we solved the symmetry-free cryo-EM structures of a single-ring chaperonin encoded by the gene 246 of bacteriophage OBP Pseudomonas fluorescens, in the nucleotide-free, ATPγS-, and ADP-bound states, with resolutions of 4.3 Å, 5.0 Å, and 6 Å, respectively. The structure of OBP chaperonin reveals a unique subunit arrangement, with three pairs of subunits and one unpaired subunit. Each pair combines subunits in two possible conformations, differing in nucleotide-binding affinity. The binding of nucleotides results in the increase of subunits’ conformational variability. Due to its unique structural and functional features, OBP chaperonin can represent a new group.  相似文献   

5.
Malonate decarboxylase from Acinetobacter calcoaceticus was isolated and characterized (Kim, Y.S., Byun, H.S., J. Biol. Chem. 269 (1994) 29636–29641), and its subunits were reanalyzed recently to be α, β, γ, and δ. The genes for the subunits, MdcA (548 a.a.), B (295 a.a.), C (238 a.a.), and D (102 a.a.), of the enzyme have been cloned by using oligonucleotide primers deduced from amino acid sequences of peptides isolated from the purified enzyme, and sequenced to be clustered in an operon in the order of A-D-B-C. The operon was found to encode more genes than mdcABCD. The Escherichia coli, transformed with the vector containing the insert mdcADBC and about 1.7 kb of an upstream region, expressed the four subunits of the enzyme but the proteins did not show enzyme activity. It indicates that, like the enzymes from Malonomonas rubra and Klebsiella pneumoniae, more genes are needed for the formation of the functional malonate decarboxylase.  相似文献   

6.
Translation initiation is down-regulated in eukaryotes by phosphorylation of the α-subunit of eIF2 (eukaryotic initiation factor 2), which inhibits its guanine nucleotide exchange factor, eIF2B. The N-terminal S1 domain of phosphorylated eIF2α interacts with a subcomplex of eIF2B formed by the three regulatory subunits α/GCN3, β/GCD7, and δ/GCD2, blocking the GDP-GTP exchange activity of the catalytic ?-subunit of eIF2B. These regulatory subunits have related sequences and have sequences in common with many archaeal proteins, some of which are involved in methionine salvage and CO2 fixation. Our sequence analyses however predicted that members of one phylogenetically distinct and coherent group of these archaeal proteins [designated aIF2Bs (archaeal initiation factor 2Bs)] are functional homologs of the α, β, and δ subunits of eIF2B. Three of these proteins, from different archaea, have been shown to bind in vitro to the α-subunit of the archaeal aIF2 from the cognate archaeon. In one case, the aIF2B protein was shown further to bind to the S1 domain of the α-subunit of yeast eIF2 in vitro and to interact with eIF2Bα/GCN3 in vivo in yeast. The aIF2B-eIF2α interaction was however independent of eIF2α phosphorylation. Mass spectrometry has identified several proteins that co-purify with aIF2B from Thermococcus kodakaraensis, and these include aIF2α, a sugar-phosphate nucleotidyltransferase with sequence similarity to eIF2B?, and several large-subunit (50S) ribosomal proteins. Based on this evidence that aIF2B has functions in common with eIF2B, the crystal structure established for an aIF2B was used to construct a model of the eIF2B regulatory subcomplex. In this model, the evolutionarily conserved regions and sites of regulatory mutations in the three eIF2B subunits in yeast are juxtaposed in one continuous binding surface for phosphorylated eIF2α.  相似文献   

7.
Chaperonins are multisubunit double-ring complexes that mediate the folding of nascent proteins [1] [2]. In bacteria, chaperonins are homo-oligomeric and are composed of seven-membered rings. Eukaryotic and most archaeal chaperonin rings are eight-membered and exhibit varying degrees of hetero-oligomerism [3] [4]. We have cloned and sequenced seven new genes encoding chaperonin subunits from the crenarchaeotes Sulfolobus solfataricus, S. acidocaldarius, S. shibatae and Desulfurococcus mobilis. Although some archaeal genomes possess a single chaperonin gene, most have two. We describe a third chaperonin-encoding gene (TF55-gamma) from two Sulfolobus species; phylogenetic analyses indicate that the gene duplication producing TF55-gamma occurred within crenarchaeal evolution. The presence of TF55-gamma in Sulfolobus correlates with their unique nine-membered chaperonin rings. Duplicate genes (paralogs) for chaperonins within archaeal genomes very often resemble each other more than they resemble chaperonin genes from other archaea. Our phylogenetic analyses suggest multiple independent gene duplications - at least seven among the archaea examined. The persistence of paralogous genes for chaperonin subunits in multiple archaeal lineages may involve a process of co-evolution, where chaperonin subunit heterogeneity changes independently of selection on function.  相似文献   

8.
A major hemolymph protein (Mr 480,000) in the larvae of the sweet potato hornworm, Agrius convolvuli, was purified and characterized. This protein was isolated with a high yield from the hemolymph of day 3 fifth final instar larvae by ammonium sulfate precipitation and Phenyl-Sepharose and Q-Sepharose column chromatographies. The protein has two subunits, an Mr 84,000 subunit (α) and an Mr 80,000 subunit (β), and the native protein was composed of a heterohexamer (α3β3). The two subunits have similar amino acid compositions, with high contents of aromatic amino acids (about 15% phenylalanine plus tyrosine) and low levels of methionine. The N-terminal amino acid sequences of both subunits showed high homologies with insect arylphorin-type storage proteins. The protein concentration in the hemolymph increased steeply from day 3 final instar larva and reached a maximum level of 42 mg/ml in females and 41 mg/ml in males among wandering larvae. The concentration in the hemolymph declined once during the larval–pupal transformation but remained high during the early–mid pupal period and almost disappeared after adult emergence. These quantitative changes were the same for males and females. Based on these characteristics, we identified the hemolymph protein as an arylphorin-type storage protein.  相似文献   

9.
ASchizosaccharomyces pombe homolog of mammalian genes encoding G proteinβ subunits,gpb1 +, was cloned by the polymerase chain reaction using primer pairs that correspond to sequences conserved in several Gβ genes of other species followed by screening of genomic and cDNA libraries. Thegpb1 gene encodes 317 amino acids that show 47% homology with human Gβ 1 and Gβ 2 and 40% homology withSaccharomyces cerevisiae Gβ protein. Disruption of thegpb1 gene indicated that this gene is not required for vegetative cell growth. However,gpb1-disrupted haploid cells mated and sporulated faster than wild-type cells, both in sporulation (MEA) and in complex medium (YE): when examined 23 h after transfer to sporulation medium, 35% ofgpb1-disrupted haploid pairs had undergone conjugation and sporulation, whereas only 3–5% of wild-type haploid pairs had done so. Overexpression of thegpb1 gene suppressed this facilitated conjugation and sporulation phenotype ofgpb1-disrupted cells but did not cause any obvious effect in wild-type cells. Co-disruption of one of the twoS. pombe Gα-subunit genes,gpa2, in thegpb1-disrupted cells did not change the accelerated conjugation and sporulation phenotype of thegpb1 ? cells. However, co-disruption of theras1 gene abolished thegpb1 ? phenotype. These results suggest that Gpbl is a negative regulator of conjugation and sporulation that apparently works upstream of Ras1 function inS. pombe. The possible relationship of Gpbl to two previously identified, putative Gα proteins ofS. pombe is discussed.  相似文献   

10.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated from an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the α- and β-subunits composing the native α2β2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

11.
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin β subunit more strongly than the α subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnβ subunits. Interestingly, chaperonin complexes containing two β subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of β subunits. The result suggests that all four β tentacles of prefoldin interact with the helical protrusions of CPN in the PFD–CPN complex as the previously proposed model that two adjacent PFD β subunits seem to interact with two CPN adjacent subunits.  相似文献   

12.
Summary The complete nucleotide sequence of the genes encoding the Rieske FeS, the cytochrome b and the cytochrome c 1 subunits of the ubiquinol-cytochrome c 2 oxidoreductase from the photosynthetic purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequences are presented. These three genes, fbcF, fbcB and fbcC, are located at contiguous sites of the genome. The DNA-deduced amino acid sequences are compared with known primary structures of corresponding proteins from other purple photosynthetic bacteria, as well as mitochondria, cyanobacteria and chloroplasts.Abbreviations BSA bovine serum albumin - Rb Rhodobacter - Rps Rhodopseudomonas  相似文献   

13.
The amino terminal sequences of the 4 caseins synthesized by translation of ovine mammary mRNAs in a wheat germ cell-free system have been investigated by automated Edman degradation. The 3 “calcium-sensitive” caseins (αs1, αs2 and β) and κ-casein were synthesized as precaseins with amino terminal hydrophobic extensions of 15 and 21 amino acid residues respectively, resembling “signal peptides” of other secretory proteins. The extra pieces of the 4 caseins, which start with a methionyl residue, end with an alanyl residue which may be one of the signals recognized by the mammary membrane-bound enzyme responsible for the specific cleavage of precaseins. The amino terminal extensions of αs1, αs2 and β-caseins show a high degree of homology suggesting that they have derived from a common ancestor.  相似文献   

14.
15.
The first report of complete nucleotide sequences for α- and β-globin chains from the Siamese hemoglobin (Crocodylus siamensis) is given in this study. The cDNAs encoding α- and β-globins were cloned by RT-PCR using the degenerate primers and by the rapid amplification of cDNA ends method. The full-length α-globin cDNA contains an open reading frame of 423 nucleotides encoding 141 amino acid residues, whereas the β-globin cDNA contains an open reading frame of 438 nucleotides encoding 146 amino acid residues. The authenticity of both α- and β-globin cDNA clones were also confirmed by the heterologous expression in Escherichia coli (E. coli). This is the first time that the recombinant C. siamensis globins were produced in prokaryotic system. Additionally, the heme group was inserted into the recombinant proteins and purified heme-bound proteins were performed by affinity chromatography using Co2+-charged Talon resins. The heme-bound proteins appeared to have a maximum absorbance at 415 nm, indicated that the recombinant proteins bound to oxygen and formed active oxyhemoglobin (HbO2). The results indicated that recombinant C. siamensis globins were successfully expressed in prokaryotic system and possessed an activity as ligand binding protein.  相似文献   

16.
The three gldCDE genes from Lactobacillus diolivorans, that encode the three subunits of the glycerol dehydratase, were cloned and the proteins were co-expressed in soluble form in Escherichia coli with added sorbitol and betaine hydrochloride. The purified enzyme exists as a heterohexamer (α2β2γ2) structure with a native molecular mass of 210 kDa. It requires coenzyme B12 for catalytic activity and is subject to suicide inactivation by glycerol during catalysis. The enzyme had maximum activity at pH 8.6 and 37 °C. The apparent K m values for coenzyme B12, 1,2-ethanediol, 1,2-propanediol, and glycerol were 1.5 μM, 10.5 mM, 1.3 mM, and 5.8 mM, respectively. Together, these results indicated that the three genes gldCDE encoding the proteins make up a coenzyme B12-dependent diol dehydratase and not a glycerol dehydratase.  相似文献   

17.
18.
《Biophysical journal》2020,118(6):1370-1380
Experiments have compared the folding of proteins with different amino acid sequences but the same basic structure, or fold. Results indicate that folding is robust to sequence variations for proteins with some nonlocal folds, such as all-β, whereas the folding of more local, all-α proteins typically exhibits a stronger sequence dependence. Here, we use a coarse-grained model to systematically study how variations in sequence perturb the folding energy landscapes of three model sequences with 3α, 4β + α, and β-barrel folds, respectively. These three proteins exhibit folding features in line with experiments, including expected rank order in the cooperativity of the folding transition and stability-dependent shifts in the location of the free-energy barrier to folding. Using a generalized-ensemble simulation approach, we determine the thermodynamics of around 2000 sequence variants representing all possible hydrophobic or polar single- and double-point mutations. From an analysis of the subset of stability-neutral mutations, we find that folding is perturbed in a topology-dependent manner, with the β-barrel protein being the most robust. Our analysis shows, in particular, that the magnitude of mutational perturbations of the transition state is controlled in part by the size or “width” of the underlying conformational ensemble. This result suggests that the mutational robustness of the folding of the β-barrel protein is underpinned by its conformationally restricted transition state ensemble, revealing a link between sequence and topological effects in protein folding.  相似文献   

19.
20.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号