首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spite of the long history of recombinant DNA technology, some genes have not been successfully cloned in Escherichia coli. This is probably due to the toxic effects of the expressed foreign gene product on E. coli. In initial attempts to clone the full-length Vssc1 voltage-sensitive sodium channel α-subunit gene from houseflies, we used one of the most popular vectors and hosts but were unable to retrieve any intact clone. By using two vectors with different copy numbers and two alternate E. coli host strains, we found that the combined use of a low copy number vector (pALTER-1) and an E. coli host strain that suppresses plasmid replication (ABLE-K) is essential to obtain intact full-length Vssc1 clone. However, since the ABLE-K strain was not a suitable host for the long-term maintenance of Vssc1 gene due to its recombination-positive genotype, it was necessary to transfer the Vssc1 plasmid from the primary host to a secondary host with a recombination-minus genotype (Stbl2) to minimize the chances of deletion or rearrangement. We believe that this cloning strategy, with a low copy number vector and the sequential use of two E. coli strains, will be also applicable for the cloning of other toxic genes.  相似文献   

2.
Cloning of methylotropic and other Gram negative bacteria's genes was performed using vectors derived from IncP4 plasmids. Plasmids, such s RSF1010 are 8.8 kb in length, have a high copy number and broad host range and can be mobilized efficiently by a number of conjugative plasmids. IncP4 plasmids have relatively few restriction enzyme's targets suitable for cloning. In this paper the construction of versatile and special purpose IncP4 vectors available for cloning DNA into broad range of bacterial species are described. The seria of versatile vectors involves the transposon containing plasmid and two-replicon vectors.In genetic construction of special vector for direct cloning of restriction fragments the genetic regulation elements of Tn 1 were used. On the base of IncP4 replicon special vectors for construction of bank genes (cosmids) and the vectors for cloning of regulation sequence were also constructed.  相似文献   

3.
Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.  相似文献   

4.
Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.  相似文献   

5.
《Gene》1996,171(1):71-73
A new Streptomyces-Escherichia coli shuttle vector, pUCS75, has been constructed to permit facile subcloning of DNA from the multiple cloning sites of the pUC plasmid and M13 phage vectors. In contrast to other commonly used shuttle vectors, pUCS75 retains the primary site for second-strand synthesis (ssi) of the parental streptomycete replicon, pIJ101. This sequence can not only enhance structural stability of the plasmid, but also confers on it an elevated copy number when replicated in Streptomyces. Consequently, the vector is useful for cloning sequences containing repeat structures and for allowing the high-level expression of cloned genes.  相似文献   

6.
Miniplasmids (pKN402 and pKN410) were isolated from runaway-replication mutants of plasmid R1. At 30°C these miniplasmids are present in 20–50 copies per cell of Escherichia coli, whereas at temperatures above 35°C the plasmids replicate without copy number control during 2–3 h. At the end of this period plasmid DNA amounts to about 75% of the total DNA. During the gene amplification, growth and protein synthesis continue at normal rate leading to a drastic amplification of plasmid gene products. Plasmids pKN402 (4.6 Md) and pKN410 (10 Md) have single restriction sites for restriction endonucleases EcoRI and HindIII; in addition plasmid pKN410 has a single BamHI site and carries ampicillin resistance. The plasmids can therefore be used as cloning vectors. Several genes were cloned into these vectors using the EcoRI sites; chromosomal as well as plasmid-coded β-lactamase was found to be amplified up to 400-fold after thermal induction of the runaway replication. Vectors of this temperature-dependent class will be useful in the production of large quantities of genes and gene products. These plasmids have lost their mobilization capacity. Runaway replication is lethal to the host bacteria in rich media. These two properties contribute to the safe use of the plasmids as cloning vehicles.  相似文献   

7.
Plant transgenesis often requires the use of tissue-specific promoters to drive the transgene expression exclusively in targeted tissues. Although the eukaryotic promoters are expected to stay silent in Escherichia coli, when the promoter-transgene units within the plant transformation vectors are constructed and propagated, some eukaryotic promoters have been reported to be active in prokaryotes. The potential activity of plant promoter in E. coli cells should be considered in cases of expression of proteins that are toxic for host cells, environmental risk assessment or the stability in E. coli of plant vectors for specific Cre/loxP applications. In this study, DNA fragments harbouring four embryo- and/or pollen-specific Arabidopsis thaliana promoters were investigated for their ability to drive heterologous gene expression in E. coli cells. For this, they were fused to gfp:gus reporter genes in the pCAMBIA1304 vector. Although BPROM, bacterial sigma70 promoter recognition program identified several sequences with characteristics similar to bacterial promoters including -10 and -35 sequences in each of tested fragments, the experimental approach showed that only one promoter fragment was able to drive relatively strong- and one promoter fragment relatively weak-GUS expression in E. coli cells. Remaining two tested promoters did not drive any transgene expression in bacteria. Our results also showed that cloning of a shorter plant promoter sequence into vectors containing lacZ α-complementation system can increase the probability of gene expression driven by upstream located lac promoter. This should be considered when cloning of plant expression units, the expression of which is unwanted in E. coli.  相似文献   

8.
Antibiotic resistance genes and antibiotics are frequently used to maintain plasmid vectors in bacterial hosts such as Escherichia coli. Due to the risk of spread of antibiotic resistance, the regulatory authorities discourage the use of antibiotic resistance genes/antibiotics for the maintenance of plasmid vectors in certain biotechnology applications. Overexpression of E. coli endogenous fabI gene and subsequent selection on Triclosan has been proposed as a practical alternative to traditional antibiotic selection systems. Unfortunately, overexpression of fabI cannot be used to select medium –copy number plasmids, typically used for the expression of heterologous proteins in E. coli. Here we report that Vibrio cholera FabV, a functional homologue of E. coli FabI, can be used as a suitable marker for the selection and maintenance of both high and medium -copy number plasmid vectors in E. coli.  相似文献   

9.
The genome information is offering opportunities to manipulate genes, polygenic characters and multiple traits in plants. Although a number of approaches have been developed to manipulate traits in plants, technical hurdles make the process difficult. Gene cloning vectors that facilitate the fusion, overexpression or down regulation of genes in plant cells are being used with various degree of success. In this study, we modified gateway MultiSite cloning vectors and developed a hybrid cloning strategy which combines advantages of both traditional cloning and gateway recombination cloning. We developed Gateway entry (pGATE) vectors containing attL sites flanking multiple cloning sites and plant expression vector (pKM12GW) with specific recombination sites carrying different plant and bacterial selection markers. We constructed a plant expression vector carrying a reporter gene (GUS), two Bt cry genes in a predetermined pattern by a single round of LR recombination reaction after restriction endonuclease-mediated cloning of target genes into pGATE vectors. All the three transgenes were co-expressed in Arabidopsis as evidenced by gene expression, histochemical assay and insect bioassay. The pGATE vectors can be used as simple cloning vectors as there are rare restriction endonuclease sites inserted in the vector. The modified multisite vector system developed is ideal for stacking genes and pathway engineering in plants.  相似文献   

10.
PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories.  相似文献   

11.
Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc) infect rice, causing bacterial blight and bacterial leaf streak, respectively, which are two economically important bacterial diseases in paddy fields. The interactions of Xoo and Xoc with rice can be used as models for studying fundamental aspects of bacterial pathogenesis and host tissue specificity. However, an improved vector system for gene expression analysis is desired for Xoo and Xoc because some broad host range vectors that can replicate stably in Xoryzae pathovars are low-copy number plasmids. To overcome this limitation, we developed a modular plasmid assembly system to transfer the functional DNA modules from the entry vectors into the pHM1-derived backbone vectors on a high-copy number basis. We demonstrated the feasibility of our vector system for protein detection, and quantification of virulence gene expression under laboratory conditions and in association with host rice and nonhost tobacco cells. This system also allows execution of a mutant complementation equivalent to the single-copy chromosomal integration system and tracing of pathogens in rice leaf. Based on this assembly system, we constructed a series of protein expression and promoter-probe vectors suitable for classical double restriction enzyme cloning. These vector systems enable cloning of all genes or promoters of interest from Xoo and Xoc strains. Our modular assembly system represents a versatile and highly efficient toolkit for gene expression analysis that will accelerate studies on interactions of Xoryzae with rice.  相似文献   

12.
A set of low copy number plasmid vectors for mammalian gene expression has been constructed. These vectors are derived from the previously described bacterial low copy number expression vectors, pWSK29 and pWKS30, which are present at six to eight copies per cell. The new plasmids also have the following useful properties: (1) they contain antibiotic resistance markers for the selection of stable mammalian cell lines; (2) they have either constitutive or inducible promoters; (3) a chimeric intron, for enhancing gene expression, is present; (4) they contain unique cloning sites; (5) they have an SV40 polyadenylation signal, and a subset of the vectors have an SV40 origin of replication for episomal replication and transient gene expression. A cDNA encoding the Menkes disease protein was cloned into two of these vectors, and transient expression studies in COS-7 cells showed that both constitutive and inducible expression was possible. This set of expression vectors will provide a useful tool for the manipulation, inEscherichia coli,of mammalian genes or cDNAs that are unstable in the high copy number vectors that are currently available.  相似文献   

13.
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.  相似文献   

14.
15.
6×His tag is one of the most widely used affinity fusion tags that facilitates detection and purification of recombinant proteins. However, the location of this tag within a particular type of protein may influence the expression, solubility, and bioactivity of the protein, and the optimal location needs to be determined experimentally. To provide a tool for rapid generation of 6× His tags at the N- or C-terminus of any recombinant protein, we have constructed a pair of Escherichia coli expression vectors—pLIC-NHis and pLIC-CHis—based on the pET30a vector, for ligation-independent cloning (LIC). Construction of this new pair of LIC vectors was accomplished by replacement of the multiple cloning site of pET30a with two specifically designed LIC cloning sites. A target gene derived by PCR with a pair of predesigned primers can be inserted into the LIC site of pLIC-NHis for expression of recombinant proteins fused with the N-terminal sequence MHHHHHHG or into that of pLIC-CHis for expression of recombinant proteins with the C-terminal sequence THHHHHH. Successful expression of two normal mammalian prion proteins and five bacterial proteins in E. coli using this pair of LIC vectors reveals that these vectors are valuable tools for the production of recombinant His-tagged proteins in E. coli.  相似文献   

16.
Summary Replication of the Streptomyces ghanaensis plasmid pSG5 was shown to be temperature sensitive. The pSG5 replicon is stably inherited at temperatures below 34° C, but is lost at incubation temperatures above this. A family of cloning vectors was constructed using the pSG5 minimal replicon and different marker genes. The vectors obtained are small in size, have an intermediate copy number, possess a broad host range and are compatible with some other streptomycete vector systems. By increasing the incubation temperature, these vectors can be eliminated from their host cells very efficiently. The suitability of the pSG5 vector family for mutating chromosomal genes by gene disruption was demonstrated: pBN10, a pSG5 derivative containing an internal fragment of the phosphinothricyl-alanyl-alanine (PTT) resistance gene pat, was integrated into the chromosomal pat gene of the PTT-producer Streptomyces viridochromogenes thus inactivating PTT resistance. The integrated pBN10 plasmid was rescued from the chromosome, together with an adjacent fragment carrying DNA of the PTT biosynthetic cluster.  相似文献   

17.
Common cloning is often associated with instability of certain classes of DNA. Here we report on IS1 transposition as possible source of such instability. During the cloning of Arabidopsis thaliana gene into commercially available vector maintained in widely used Escherichia coli host the insertion of complete IS1 element into the intron of cloned gene was found. The transposition of the IS1 element was remarkably rapid and is likely to be sequence-specific. The use of E. coli strains that lower the copy number of vector or avoiding the presence of the problematic sequence is a solution to the inadvertent transposition of IS1. The transposition of IS1 is rare but it can occur and might confound functional studies of a plant gene.  相似文献   

18.
A plasmid which contains a cos site of λ and can be packaged into lambda bacteriophage particles is termed a “cosmid”. Such plasmids can be used as gene cloning vectors in conjunction with an in vitro packaging system. The properties of a new series of cosmids based on the ColE1 replicon are described, including small temperature-sensitive plasmids which have lost mobilisation functions and carry no IS sequences. Amongst these plasmids are vectors for XmaI, BglII, BamHI, HindIII, PstI, KpnI, SalI and EcoRI. It is demonstrated that by using cosmids in particular size ranges these plasmids provide a high efficiency cloning system which yields essentially only hybrid clones without resort to a second selection or screening step, and without prior modification (e.g. phosphatase) treatment of the DNA.Attempts were made to optimise the cloning properties of the cosmid system. An Escherichia coli “gene bank” was obtained with an efficiency of 5·105 clones per μg of E. coli DNA, and in which any particular unselected marker may be found in about one out of every 400 clones.It was demonstrated that deletion of mobilisation functions leads to loss of ability to form relaxation-complex without affecting copy number or segregation properties of the temperature-sensitive derivatives. The vectors are amplifiable in chloramphenicol to make up about 50% of the total cellular DNA.  相似文献   

19.
《Gene》1996,172(1):163-164
We report the construction of two cloning vectors that are based on the Pseudomonas-Escherichia shuttle vector, pUCP19. The new vectors, pUCPKS and pUCPSK, contain a significantly expanded multiple cloning site (MCS) with an adjacent T7 promoter sequence. In conjunction with specifically engineered host strains encoding an inducible T7 RNA polymerase, these vectors allow the controlled production of plasmid-encoded proteins in both Escherichia coli and Pseudomonas aeruginosa to analyse the spectrum of products encoded by cloned segments of DNA. The usefulness of these vectors was demonstrated by expressing the chloramphenicol acetyltransferase (CAT)-encoding gene.  相似文献   

20.

Background

As engineered biological systems become more complex, it is increasingly common to express multiple operons from different plasmids and inducible expression systems within a single host cell. Optimizing such systems often requires screening combinations of origins of replication, expression systems, and antibiotic markers. This procedure is hampered by a lack of quantitative data on how these components behave when more than one origin of replication or expression system are used simultaneously. Additionally, this process can be time consuming as it often requires the creation of new vectors or cloning into existing but disparate vectors.

Results

Here, we report the development and characterization of a library of expression vectors compatible with the BglBrick standard (BBF RFC 21). We have designed and constructed 96 BglBrick-compatible plasmids with a combination of replication origins, antibiotic resistance genes, and inducible promoters. These plasmids were characterized over a range of inducer concentrations, in the presence of non-cognate inducer molecules, and with several growth media, and their characteristics were documented in a standard format datasheet. A three plasmid system was used to investigate the impact of multiple origins of replication on plasmid copy number.

Conclusions

The standardized collection of vectors presented here allows the user to rapidly construct and test the expression of genes with various combinations of promoter strength, inducible expression system, copy number, and antibiotic resistance. The quantitative datasheets created for these vectors will increase the predictability of gene expression, especially when multiple plasmids and inducers are utilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号