首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene coding for a DNA polymerase β from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpolβ), using the information from eight peptides of the T. cruzi β-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-polβ with mitochondrial polβ and polβ-PAK from other trypanosomatids was between 68–80% and 22–30%, respectively. Miranda Tc-polβ protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata polβ, which suggests that the TcI-polβ plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells.  相似文献   

2.
3.
4.
5.
Trypanosoma cruzi is a parasite responsible for Chagas disease. The identification of new targets for chemotherapy is a major challenge for the control of this disease. Several lines of evidences suggest that the translational system in trypanosomatids show important differences compared to other eukaryotes. However, there little is known information about this. We have performed a detailed data mining search for ribosomal protein genes in T. cruzi genome data base combined with mass spectrometry analysis of purified T. cruzi ribosomes. Our results show that T. cruzi ribosomal proteins have ∼50% sequence identity to yeast ones. Nevertheless, some parasite proteins are longer due to the presence of several N- or C-terminal extensions, which are exclusive of trypanosomatids. In particular, L19 and S21 show C-terminal extensions of 168 and 164 amino acids, respectively. In addition, we detected two 60S subunit proteins that had not been previously detected in the T. cruzi total proteome; namely, L22 and L42.  相似文献   

6.
Trypanosoma cruzi (T. cruzi) infected C57BL/6 mice developed a progressive fatal disease due to an imbalance in the profile of circulating related compounds accompanying infection like tumor necrosis factor alpha (TNFα). TNFα has been proposed as an important effector molecule in apoptosis. In this work, we evaluate inflammation and the proteins involved in apoptotic process in liver of infected mice and the role of TNFα. C57BL6/mice were infected subcutaneously with 100 viable trypomastigotes of Tulahuén strain of T cruzi. One set of these animals were treated with 375 μg of antihuman TNFα blocking antibody. Animals were sacrificed at 14 days post-infection (p.i).The analyses of Bcl-2 family proteins revealed an increase of the pro-apoptotic proteins Bax and tBid in T. cruzi-infected mice. Compared with control animals, cytochrome c release was increased. Apoptosis was also induced in infected mice. Anti-TNFα treatment decreases hepatic apoptosis. Our results suggest that T. cruzi infection induces programmed cell death in the host liver by increase of TNFα production, associated with TNF-R1 over-expression, that set in motion the Bid cleavage and mitochondrial translocation, Bax mitochondrial translocation, cytochrome c release, and ultimately apoptosis induction.  相似文献   

7.
A cDNA encoding for a new member of the DnaJ protein family has been isolated by screening a mouse spermatogenic cell expression library. The full-length cDNA obtained by extension of the original clone with RT-PCR has been characterized with respect to its DNA sequence organization and expression. The predicted open reading frame encodes a protein of 242 amino acid residues whose sequence is similar to that of bacterial DnaJ proteins in the amino-terminal portion since it contains the highly conserved J domain which is present in all DnaJ-like proteins and is considered to have a critical role in DnaJ protein–protein interactions. In contrast, the middle and carboxyl-terminal regions of the protein are not similar to any other DnaJ proteins, with the exception of the human neuronal HSJ-1 with which displays a 48% identity in a 175-amino-acid overlap. Analysis of RNAs from a wide spectrum of mouse somatic tissues, including the brain, and from ovary and testis reveals that the gene is specifically expressed in testis only. Developmental Northern blot analysis of testis RNA from mice of different ages andin situhybridization on juvenile and adult testis sections demonstrate that the mRNA is first transcribed in spermatids. A similar pattern of expression is exhibited also in rat testis. Based upon all these observations, we have named this novel mouse gene, MSJ-1, for mouse sperm cell-specific DNAJ first homolog.  相似文献   

8.

Background

Trypanosoma cruzi has a single flagellum attached to the cell body by a network of specialized cytoskeletal and membranous connections called the flagellum attachment zone. Previously, we isolated a DNA fragment (clone H49) which encodes tandemly arranged repeats of 68 amino acids associated with a high molecular weight cytoskeletal protein. In the current study, the genomic complexity of H49 and its relationships to the T. cruzi calpain-like cysteine peptidase family, comprising active calpains and calpain-like proteins, is addressed. Immunofluorescence analysis and biochemical fractionation were used to demonstrate the cellular location of H49 proteins.

Methods and Findings

All of H49 repeats are associated with calpain-like sequences. Sequence analysis demonstrated that this protein, now termed H49/calpain, consists of an amino-terminal catalytic cysteine protease domain II, followed by a large region of 68-amino acid repeats tandemly arranged and a carboxy-terminal segment carrying the protease domains II and III. The H49/calpains can be classified as calpain-like proteins as the cysteine protease catalytic triad has been partially conserved in these proteins. The H49/calpains repeats share less than 60% identity with other calpain-like proteins in Leishmania and T. brucei, and there is no immunological cross reaction among them. It is suggested that the expansion of H49/calpain repeats only occurred in T. cruzi after separation of a T. cruzi ancestor from other trypanosomatid lineages. Immunofluorescence and immunoblotting experiments demonstrated that H49/calpain is located along the flagellum attachment zone adjacent to the cell body.

Conclusions

H49/calpain contains large central region composed of 68-amino acid repeats tandemly arranged. They can be classified as calpain-like proteins as the cysteine protease catalytic triad is partially conserved in these proteins. H49/calpains could have a structural role, namely that of ensuring that the cell body remains attached to the flagellum by connecting the subpellicular microtubule array to it.  相似文献   

9.

Background

Trypanosoma cruzi, a flagellate protozoan, is the etiological agent of Chagas disease, a chronic illness that causes irreversible damage to heart and digestive tract in humans. Previous 2-DE analyses of T. cruzi proteome have not focused on basic proteins, possibly because of inherent difficulties for optimizing 2-DE in the alkaline pH range. However, T. cruzi wide pH range 2-DE gels have shown few visible spots in the alkaline region, indicating that the parasite either did not have an appreciable amount of alkaline proteins or that these proteins were underrepresented in the 2-DE gels.

Results

Different IEF conditions using 6–11 pH gradient strips were tested for separation of T. cruzi alkaline proteins. The optimized methodology described here was performed using anodic "paper bridge" sample loading supplemented by increased concentration of DTT and Triton X-100 on Multiphor II (GE Healthcare) equipment and an electrode pad embedded in DTT- containing solution near the cathode in order to avoid depletion of reducing agent during IEF. Landmark proteins were identified by peptide mass fingerprinting allowing the production of an epimastigote 2-DE map. Most identified proteins corresponded to metabolic enzymes, especially those related to amino acid metabolism. The optimized 2-DE protocol was applied in combination with the "two-in-one gel" method to verify the relative expression of the identified proteins between samples from epimastigote and trypomastigote life stages.

Conclusion

High resolution 2-DE gels of T. cruzi life forms were achieved using the optimized methodology and a partial epimastigote alkaline 2-DE map was built. Among 700 protein spots detected, 422 were alkaline with a pI above 7.0. The "two-in-one gel" method simplified the comparative analysis between T. cruzi life stages since it minimized variations in spot migration and silver-stained spot volumes. The comparative data were in agreement with biological traits of T. cruzi life forms and also corroborated previous T. cruzi proteomic studies. For instance, enzymes related to amino acid metabolism and dehydrogenases were more abundant in epimastigote 2-DE gel whilst trans-sialidase and a paraflagellar protein were found specifically in the trypomastigote 2-DE profile.  相似文献   

10.

Background

Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.

Methodology/Principal Findings

The T. rangeli haploid genome is ∼24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heat-shock proteins.

Conclusions/Significance

Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets.  相似文献   

11.
A cDNA clone encoding the human mitochondrial leucyl-tRNA synthetase (mtLeuRS) has been identified from the EST databases. Analysis of the protein encoded by this cDNA indicates that the protein is 903 amino acids in length and contains a mitochondrial signal sequence that is predicted to encompass the first 21 amino acids. Sequence analysis shows that this protein contains the characteristic motifs of class I aminoacyl-tRNA synthetases and regions of high homology to other mitochondrial and bacterial LeuRS proteins. The mature form of this protein has been cloned and expressed in Escherichia coli. Gel filtration indicates that human mtLeuRS is active in a monomeric state, with an apparent molecular mass of 101 kDa. The human mtLeuRS is capable of aminoacylating E. coli tRNA(Leu). Its activity is inhibited at high levels of either monovalent or divalent cations. K(M) and k(cat) values for ATP:PP(i) exchange and for the aminoacylation reaction have been determined.  相似文献   

12.
A liquid medium was developed for the continuous cultivation of Trypanosoma cruzi. Among the several highly purified macromolecules tested only bovine liver catalase, horseradish peroxidase, lactoperoxidase, and bovine hemoglobin supported the continuous growth, at high yield, of mice-virulent Trypanosoma cruzi; other hemoproteins were inactive. Bovine liver catalase showed optimal Trypanosoma cruzi growth-promoting activity, parasites reaching 20 × 106 parasites/ml (95% epimastigotes) at about 10 days in most of the 45 subpassages to date. Furthermore, this protein in the incubation medium provided all the amino acid requirements of actively growing parasites, thus eliminating the need for exogeneous free amino acids. Additional experiments revealed that the hemoprotein's growth-promoting activity was independent of any enzymatic activity and that reconstituting the exact protein composition by means of exogeneous amino acids did not support parasite multiplication, suggesting the importance of the primary structure of the active proteins for growth-promoting activity. These active macromolecules supported the multiplication of five different strains of Trypanosoma cruzi, but did not support Leishmania brasiliensis or Leishmania mexicana proliferation, suggesting species specificity.  相似文献   

13.
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.  相似文献   

14.

Background

Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20–50 maxicircles (∼20 kb) and thousands of minicircles (0.5–10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30–35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs.

Methodology/Principal Findings

To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi.

Conclusions/Significance

mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi.  相似文献   

15.
The 90-kDa heat shock proteins (HSP90) are important in the regulation of numerous intracellular processes in eukaryotic cells. In particular, HSP90 has been shown to be involved in the control of the cellular differentiation of the protozoan parasite Leishmania donovani. We investigated the role of HSP90 in the related parasite Trypanosoma cruzi by inhibiting its function using geldanamycin (GA). GA induced a dose-dependent increase in heat shock protein levels and a dose-dependent arrest of proliferation. Epimastigotes were arrested in G1 phase of the cell cycle, but no stage differentiation occurred. Blood form trypomastigotes showed conversion towards spheromastigote-like forms when they were cultivated with GA, but differentiation into epimastigotes was permanently blocked. We conclude that, similar to leishmanial HSP90, functional HSP90 is essential for cell division in T. cruzi and serves as a feedback inhibitor in the cellular stress response. In contrast to L. donovani cells, however, T. cruzi cells treated with GA do not begin to differentiate into relevant life cycle stages.  相似文献   

16.
Post-translational methylation of proteins, which occurs in arginines and lysines, modulates several biological processes at different levels of cell signaling. Recently, methylation has been demonstrated in the regulation beyond histones, for example, in the dynamics of protein-protein and protein-nucleic acid interactions. However, the presence and role of non-histone methylation in Trypanosoma cruzi, the etiologic agent of Chagas disease, has not yet been elucidated. Here, we applied mass spectrometry-based-proteomics (LC-MS/MS) to profile the methylproteome of T. cruzi epimastigotes, describing a total of 1252 methyl sites in 824 proteins. Functional enrichment and protein-protein interaction analysis show that protein methylation impacts important biological processes of the parasite, such as translation, RNA and DNA binding, amino acid, and carbohydrate metabolism. In addition, 171 of the methylated proteins were previously reported to bear phosphorylation sites in T. cruzi, including flagellar proteins and RNA binding proteins, indicating that there may be an interplay between these different modifications in non-histone proteins. Our results show that a broad spectrum of functions is affected by methylation in T. cruzi, indicating its potential to impact important processes in the biology of the parasite and other trypanosomes.  相似文献   

17.
We have isolated the cDNA and corresponding genomic DNA encoding citrate synthase in Neurospora crassa. Analysis of the protein coding region of this gene, named cit-1, indicates that it specifies the mitochondrial form of citrate synthase. The predicted protein has 469 amino acids and a molecular mass of 52002 Da. The gene is interrupted by four introns. Hybridization experiments show that a cit-1 probe binds to two different fragments of genomic DNA, which are located on different chromosomes. Neurospora crassa may have two isoforms of citrate synthase, one in the mitochondria and the other in microbodies.  相似文献   

18.
Trypanosoma rangeli is a hemoflagellate parasite which is able to infect humans. Distinct from Trypanosoma cruzi, the causative agent of Chagas disease, T. rangeli is non-pathogenic to the vertebrate host. The manner by which the T. rangeli interacts with the host is still unknown, but it certainly depends on the surface molecules. Major surface proteins (MSP) are GPI-anchored, zinc-dependent metalloproteases present in the surface of all trypanosomatids studied so far, which are implicated as virulence factors in pathogenic trypanosomatids, such as Leishmania spp and T. cruzi. The aims of this work were to generate the complete sequence of a T. rangeli MSP (TrMSP) gene and to determine the 3D-structure of the predicted protein by homology modeling. The plasmid bearing a complete copy of a TrMSP gene was completely sequenced and the predicted protein was modeled using Modeller software. Results indicate that TrMSP open reading frame (ORF) codes for a predicted 588 amino acid protein and shows all elements required for its posttranslational processing. Multiple sequence alignment of TrMSP with other trypanosomatids’ MSPs showed an extensive conservation of the N-terminal and central regions and a more divergent C-terminal region. Leishmania major MSP (LmMSP), which had its crystal structure previously determined, has an overall 35 % identity with TrMSP. This identity allowed the comparative molecular modeling of TrMSP, which demonstrated a high degree of structural conservation between MSPs from other trypanosomatids (TrypMSPs). All modeled MSPs have a conserved folding pattern, apart from structural divergences in the C-domain and discrete differences of charge and topology in the catalytic cleft, and present the same geometry of the canonical HEXXH zinc-binding motif. The determination of surface charges of the molecules revealed that TrMSP is a predominantly positive protein, whereas LmMSP and Trypanosoma cruzi MSP (TcMSP) are negative proteins, suggesting that substrates recognized by TcMSP and LmMSP could not interact with TrMSP. Moreover, the comparison between TrMSP and TcMSP protein sequences has revealed 45 non-neutral amino acid substitutions, which can be further assessed through protein engineering. The characteristics of TrMSP could explain, at least in part, the lack of pathogenicity of T. rangeli to humans and point to the necessity of identifying the biological targets of this enzyme.
Figure
In this study, we performed a comparative analysis of surface charges of Major Surface Proteases from Leishmania major (1LML), Chritidia fasciculata, Trypanosoma brucei, Trypanosoma cruzi and Trypanosoma rangeli. According to our results, TrMSP presents the distribution of surface charges predominantly positive, while the TrypMSPs have a profile electronegative. Solvent-accessible residues are colored according to their charge as described in the scale below each structure (varying from more negative, in red to more positive, in blue). The histogram indicates the amount of charged residues in each protein: H, K and R are basic (positive) residues, while D and E are acid (negative) residues.  相似文献   

19.
Euglena gracilis possessing chloroplasts of secondary green algal origin and parasitic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania major belong to the protist phylum Euglenozoa. Euglenozoa might be among the earliest eukaryotic branches bearing ancestral traits reminiscent of the last eukaryotic common ancestor (LECA) or missing features present in other eukaryotes. LECA most likely possessed mitochondria of endosymbiotic ??-proteobacterial origin. In this study, we searched for the presence of homologs of mitochondria-targeted proteins from other organisms in the currently available EST dataset of E. gracilis. The common motifs in predicted N-terminal presequences and corresponding homologs from T. brucei, T. cruzi and L. major (if found) were analyzed. Other trypanosomatid mitochondrial protein precursor (e.g., those involved in RNA editing) were also included in the analysis. Mitochondrial presequences of E. gracilis and these trypanosomatids seem to be highly variable in sequence length (5?C118 aa), but apparently share statistically significant similarities. In most cases, the common (M/L)RR motif is present at the N-terminus and it is probably responsible for recognition via import apparatus of mitochondrial outer membrane. Interestingly, this motif is present inside the predicted presequence region in some cases. In most presequences, this motif is followed by a hydrophobic region rich in alanine, leucine, and valine. In conclusion, either RR motif or arginine-rich region within hydrophobic aa-s present at the N-terminus of a preprotein can be sufficient signals for mitochondrial import irrespective of presequence length in Euglenozoa.  相似文献   

20.
ABSTRACT It has been suggested that several Trypanosoma cruzi antigens have possible protective epitopes which may be suitable vaccine candidates. We found previously that animals resistant to T. cruzi infection produced antibodies against the 75-77-kDa parasite antigen. To test the ability of the recombinant form of this antigen to protect animals from T. cruzi infection, the cDNA which encodes a portion of the 75-77-kDa antigen was cloned using a cDNA library constructed in an orientation-specific bacteriophage expression vector (λgt11) from poly (A)+ RNA of Brazil strain epimastigotes. One clone, named SFS-40, was selected by screening the library using affinity purified antibodies specific for the 75-77-kDa parasite antigen as probe. The cDNA corresponding to the 1.7-kilobase insert of SFS-40 was subcloned into plasmid vectors and characterized. The cDNA sequence encodes a polypeptide of about 40 kDa. The putative product of the cDNA was homologous to members of the 70-kDa stress protein family. When epimastigotes were shifted from 29° C to 37° C, there was no change in the level of SFS-40 mRNA. In contrast, the 70-kDa heat shock protein mRNA of the parasite was increased about four fold by this treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号