首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted to ascertain if follicles could reach ovulatory size after the largest follicle (dominant) has been removed at different times during a progestin treatment in anestrous ewes, and secondly to determine if these new follicles could respond to an hCG-induced ovulation and have similar function as corpora lutea. Mature crossbred sheep (n=44) in anestrous were treated with an intravaginal sponge containing 40 mg of FGA (day 0=sponge insertion) for 9 days. Treatments consisted of cauterization of the largest follicle on the experimental day 3 (T1), day 6 (T2) and day 9 (T3); day 12 to ascertain the size of the largest follicle in control ewes. During laparotomies, the diameters of the largest follicle (DF), and those of the second and third largest follicles (SF1 and SF2, respectively) were determined. On day 12, a second laparotomy was performed for those ewes which had their DF cauterized on days 3, 6 and 9, a fourth group was left intact and only laparotomized on day 12. At this time, the size of the new DF, SF1 and SF2 were determined. Immediately after the laparotomy on day 12, all the ewes were treated with 1000 i.u. of hCG to induce ovulation. Blood samples were collected daily from day 0 to 50 and samples were analyzed for progesterone concentrations. The size of the DF at the time of sponge removal was smaller that those observed on day 3 or 6 of sponge suggesting that follicles in ewes treated with this progestin regress and a new wave of follicular development ensues between day 6 and the time of sponge removal. The size of the DF on day 12 was also smaller in ewes that have the largest follicle removed at the time of sponge removal reflecting that these follicles had a shorter period of growth; however, the rate of growth was greater for these follicles than for follicles arising after cauterization on day 3 or 6 after sponge insertion. There were no differences among treatments, in the number of ewes that formed a corpus luteum (CL) in response to hCG. Life span of the corpora lutea did not differ among ewes having their DF removed on day 6 or 9 or those that served as controls, however, ewes that had their DF removed on day 3 developed longer lived CL in a larger proportion of animals. Average progesterone concentration during the life span of the induced corpora lutea was greater in control ewes than in any other experimental group. These observations allow us to conclude that, (a) the follicular dynamics observed in anestrous ewes treated with a progestin intravaginal sponge resembles that observed during the normal estrous cycle in the ewe; (b) the effects of progesterone on life span of the corpus luteum could not be only related to direct effects at the follicle but also involve changes in other components of the uterine-ovarian-hypothalamic axis; (c) the mechanisms controlling luteal life span seem to be different to those mechanisms controlling the function of the induced corpus luteum.  相似文献   

2.
Ovarian response to hCG treatment during the oestrous cycle in heifers   总被引:2,自引:0,他引:2  
The aims of this study were to investigate whether treatment with a single ovulatory dose of hCG, between the day of oestrus and the end of the luteal phase, could induce extra ovulations in heifers and whether the presence of an existing corpus luteum (CL) affected the response. Heifers (N = 32) were injected with 1500 i.u. hCG or saline on a given day of the oestrous cycle. Treatments were repeated during subsequent cycles to provide a total of 71 observations, 57 of which followed an injection of hCG, given between Day 0 (oestrus) and Day 16, and 14 of which followed saline injections as controls. Ovulatory responses were noted by laparoscopy 2 days after hCG treatment. No heifers injected with saline produced additional CL. Of the hCG-treated cycles, 23 resulted in the formation of an additional CL, and this was significantly affected by the stage of the oestrous cycle when hCG was given; a greater response was observed during the early (Days 4-7) and late (Days 14-16) stages of the luteal phase than at the mid-luteal phase of the oestrous cycle. Two heifers were also treated with hCG on Days 17 or 18 of the oestrous cycle, but before oestrus; both had induced CL. There were no significant differences between the left-right orientation of the existing CL or the hCG-induced CL. These results demonstrate that the large, luteal-phase follicle of the cow is capable of ovulating in response to hCG and that the induced CL is not affected by the presence of an existing CL.  相似文献   

3.
The hypothesis that, in the ewe, prostaglandin (PG) F2alpha administration on day 3 after ovulation is followed by luteolysis and ovulation was tested using 24 animals. The ewes were treated with a dose of a PGF2alpha analogue (delprostenate, 160 microg) on days 1 (n=8), 3 (n=8) or 5 (n=8) after ovulation, was established by transrectal ultrasonography. Daily scanning and blood sampling were performed to determine ovarian changes and progesterone serum concentrations by radioinmunoassay. The treatment induced a sharp decrease of progesterone concentrations followed by oestrus and ovulation in all ewes treated on days 3 and 5 and in one ewe treated on day 1 (8/8, 8/8, 1/8; P<0.05). Seven ewes treated on day 1 did not respond to PGF2alpha treatment and had an inter-ovulatory cycle of normal length (17.4 +/- 0.5 days). However, the profile of progesterone concentrations during the cycle of these ewes was delayed 1 day (P<0.05) compared with a control cycle. The overall interval between PGF2alpha and oestrus for the 17 responding ewes was 42.4 +/- 2.3 h. In 15 of these ewes the ovulatory follicle was originated from the first follicular wave and the ovulation occurred at 60.8 +/- 1.8 h after PGF2alpha treatment. The other two responding ewes ovulated an ovulatory follicle originated from the second follicular wave between 72 and 96 h after treatment. These results support the hypothesis and suggest that refractoriness to PGF2alpha of the recently formed corpus luteum (CL) may be restricted to the first 1-2 days post-ovulation.  相似文献   

4.
The influence of Gn-RH, hCG and a PMSG-hCG mixture (PG600) on the time of ovulation, ovulation rate and on the occurrence of oestrus in ewes treated with progestagen-impregnated sponges for 12 days examined. The effects of Gn-RH analogues on plasma LH, oestrus, ovulation and conception rate were also investigated. Six separate experiments were carried out. When 50 micrograms Gn-RH were given 24 h after sponge removal ovulation occurred in 44--46% of ewes within 24 h and in all ewes by 34 h. Gn-RH was a more potent ovulation synchronizer than hCG. Both hCG and PG600 reduced the incidence of overt oestrus. Gn-RH also had this effect in ewes treated during February and May but not in August and September. Gn-RH analogues given 2 days before sponge removal significantly increased ovulation rate. The display of oestrus was not affected in ewes treated 2 days before sponge removal but was suppressed in 43-69% of ewes treated with an analogue at the time of sponge removal. Ovulation occurred in 50-62% of ewes within 30-35 h of injection of Gn-RH analogues, regardless of the time of their administration. The release of LH in response to one analogue was not influenced by the presence of the progestagen-impregnated sponge in the vagina. When given a Gn-RH analogue 2 days before sponge removal or at the time of sponge removal 63 and 62% of mated ewes became pregnant compared with 70% of control ewes.  相似文献   

5.
The ovulatory and oestrus responses of seasonally anovulatory ewes to the presence of ewes with synchronised oestrus was evaluated. The experiment was carried between 4 June and 1 July when the ewes were in seasonal anoestrus. Two hundred adult Suffolk and Dorset ewes were used. The animals were randomly divided into five groups balanced according to breed: Group I (treated) consisted of 25 ewes induced to cycle by the treatment for 10 days with vaginal sponges containing 40 mg of fluorogestone acetate and an injection of 200 IU of pregnant mares' serum gonadotropin (PMSG) at the time of sponge removal. Group II (mixed) consisted of 25 untreated ewes housed in the same pen as the treated ewes throughout the experiment. Groups III, IV and V each consisted of 50 untreated ewes located in adjacent pens progressively more distant from the pen which contained the treated animals. The ewes in Group III had contact with the treated animals through the fence, while those in Groups IV and V were separated from the treated ewes by one and two pens respectively. Day 0 of the experiment was defined as the day in which the sponges were removed from the treated ewes. Blood samples for progesterone determination were obtained from 25 animals from each group on days 6, 10 and 13. Oestrus was detected twice a day using vasectomised rams introduced to each pen for 15 min in the morning and 15 min in the evening. As expected, the proportion of ewes with luteal activity was higher (P < 0.01) in the treated group than in the other four groups on days 6, 10 and 13. By day 13 progesterone levels were elevated in 87.5%, 52%, 37.5%, 32% and 13% of the ewes sampled in Groups I, II, III, IV and V respectively. There was a direct relationship between the proportion of non-treated ewes with ovarian activity and the intensity of contact with the treated ewes, being maximal in the ewes that remained mixed with the synchronised animals, and lowest in the ewes located in the most distant pen. The proportion of ewes that showed oestrus during the first 14 days after sponge removal was significantly higher in the treated (92%) and mixed (40%) groups than in Groups III (10%), IV (8%) and V (4%). It is concluded that the presence of a large number of ewes in oestrus can stimulate ovarian activity in seasonally anoestrous ewes. This female to female stimulation could be mediated by olfactory, visual and/or auditory stimuli.  相似文献   

6.
G.B. Martin 《Theriogenology》1979,12(5):283-287
Seasonally anovular Merino ewes can be induced to ovulate by introducing rams. This ovulation is rarely accompanied by oestrus, and the resulting corpus luteum may regress prematurely. Oestradiol (100 μg i.m.) delayed and depressed the ovulatory response (33/45 vs 33/34 for controls), but had no effect on the expression of oestrus (10/33 vs 7/33 in controls) or the frequency of short cycles (16/33 vs 15/33 for controls). The ovulation following premature regression of the CL was not accompanied by oestrus. It seems unlikely that the lack of oestrus and the formation of a CL with short life span are due to a deficiency of oestradiol.  相似文献   

7.
In late February Dorset rams were introduced (day = 0) to 40 mature Romney ewes that were observed by laparoscopy to be anovular. The ovaries of 20 of these ewes were examined by laparoscopy every second day while the remaining 20 ewes served as unoperated controls. Jugular blood samples were taken daily and plasma progesterone concentrations assayed to provide information on the functional status of any corpora lutea (CL) arising from ovulations stimulated by introduction of the rams. Eighty-five percent (-17/20) of the ewes that were repeatedly laparoscoped had ovulated within 4 days of ram introduction and premature regression of the CL had occurred between days 4 and 8 in 8 ewes and days 6 to 10 in 2 ewes. A second ovulation was observed after or during the premature regression of the first CL and this subsequent CL was maintained for the normal duration. The prematurely regressing CL produced a small peak in progesterone concentration on days 4 to 5 but the concentrations declined on days 6 to 7. In the unoperated ewes 50% (-10/20) appeared, from the progesterone profiles, to have ovulated by day 4 and half of these appeared to have premature CL regression. The interval from introduction of the ram to first oestrus was 23 days in ewes with premature regression of the CL and 19 days in ewes ovulating within 4 days but having no premature regression. From the results it was concluded that the premature regression of the CL is the cause of the delayed interval from ram introduction to first oestrus in Romney ewes and is a major factor contributing to the two peaks of oestrous activity observed after ram introduction.  相似文献   

8.
Reproductive performance and fetal growth were determined when hCG (150 i.u. Pregnyl; n=44), GnRH (4 microg synthetic GnRH agonist, buserelin, Receptal; n=43) or saline (control, n=45) was administered (i.m.) to ewes on day 12 post mating during the breeding season. A total of 12 ewes was slaughtered on day 45 of pregnancy (four from each treatment group). Non-return rate and lambing rate were higher for ewes in the hCG (0.89 and 84%) and GnRH treated groups (0.86 and 79%) than for ewes in the control (0.69 and 62%) group (P<0.05). The ewes in the hCG and GnRH groups also had more twins (P<0.05). Birth weights of these twin lambs in the hCG and GnRH groups were heavier than those in the control group (P<0.05), but this difference had disappeared at weaning 60 days later. Lamb mortality was similar among treatment groups resulting in a higher number of lambs weaned in the hCG and GnRH groups. The ovarian weights and the number of corpora lutea (CL) and luteal weights of ewes slaughtered on day 45 of pregnancy were greater (P<0.05) in the hCG and GnRH treated groups than those measured in the control group. Administration of hCG on day 12 post mating increased gravid uterus weight, crown-rump-length (CRL), chorioallantois weight and total cotyledon weight (P<0.05) of conceptuses recovered on day 45 of pregnancy compared to the control group. The weights of caruncules (P<0.05) and placenta (P<0.01) were higher in conceptuses of both the hCG and GnRH groups. The weights of fetuses in the hCG group were higher than those in both the GnRH and control groups (P<0.05). In conclusion, both hCG and GnRH administration improved reproductive performance of ewes when administered on day 12 post mating. However, hCG and GnRH appeared to act differently on embryo survival because only hCG administration increased fetal growth.  相似文献   

9.
The incidence of oestrus (6/46) and ovulation (14/46) in ewes given antisera to androstenedione, oestrone, oestradiol and testosterone either separately or as a mixture of these sera at the time of treatment with progestagen sponges alone or progestagen sponges followed by LH-RH was similar to that of control ewes (2/13 and 6/13 respectively). The number of corpora lutea (CL) recorded for those ewes that did ovulate was, however, greater in the antiserum-treated ewes (22 CL/14 ewes) than in the controls (6 CL/6 ewes) at the first ovulation after sponge withdrawal. This superiority persisted to the second ovulation (53 CL/42 treated ewes compared to 13 CL/13 controls). The results for groups treated with antisera did not differ amongst themselves.  相似文献   

10.
The objective of this study was to characterize follicular development, onset of oestrus and preovulatory LH surge, and in vivo embryo yields of sheep superovulated after treatment with a single dose of 1.5mg of GnRH antagonist (GnRHa). At first FSH dose, ewes treated with GnRH antagonist (n=12) showed a higher number of gonadotrophin-responsive follicles, 2-3mm, than control ewes (n=9, 13.5+/-3.8 versus 5.3+/-0.3, P<0.05). Administration of FSH increased the number of >or=4mm follicles at sponge removal in both groups (19.3+/-3.8, P<0.0005 for treated ewes and 12.7+/-5.4, P<0.01 for controls). Thereafter, a 25% of the GnRHa-treated sheep did not show oestrous behaviour whilst none control sheep failed (P=0.06). The preovulatory LH surge was detected in an 88.9% of control ewes and 66.7% of GnRHa-treated sheep. A 77.8% of control females showed ovulation with a mean of 9.6+/-0.9 CL and 3.3+/-0.7 viable embryos, while ewes treated with GnRHa and showing an LH surge exhibited a bimodal distribution of response; 50% showed no ovulatory response and 50% superovulated with a mean of 12.2+/-1.1 CL and 7.3+/-1.1 viable embryos. In conclusion, a single dose of GnRHa enhances the number of gonadotrophin-dependent follicles able to grow to preovulatory sizes in response to an FSH supply. However, LH secretion may be altered in some females, which can affect the preovulatory LH surge and/or can weak the terminal maturation of ovulatory follicles.  相似文献   

11.
Oxytocin was administered to Dorset and Shropshire ewes in one experiment and to Dorset ewes in a further 4 experiments. In Exp. 1, concentrations of plasma progesterone and lengths of the oestrous cycle in ewes given oxytocin subcutaneously twice a day on Days 0-3, 2-5, 4-7, 6-9, 8-11, 10-13, 12-15 or 14-17 were similar to those of control ewes. In Exp. 2, intraluteal infusions of oxytocin from Day 2 to Day 9 after oestrus had no effect on concentration of progesterone, weight of CL collected on Day 9 or length of the oestrous cycle. In Exp. 3, intraluteal infusions of oxytocin on Days 10-15 after oestrus had no effect on weight of CL collected on Day 15. In Exp. 4, s.c. injections of oxytocin on Days 3-6 after oestrus had no effect on weight of CL collected on Day 9, concentrations of progesterone or length of the oestrous cycle. In Exp. 5, s.c. injections of oxytocin twice a day did not affect the maintenance and outcome of pregnancy in lactating and nonlactating ewes. Exogenous oxytocin, therefore, does not appear to affect luteal function at any stage of the ovine oestrous cycle although oxytocin has been reported by others to alter ovine CL function.  相似文献   

12.
A field experiment was conducted to examine the effect of anti-oestradiol-17B antibody titre on the oestrous and ovulatory responses of ewes to low (600 i.u.) or high (1200 i.u.) doses of pregnant mare's serum gonadotrophin (PMSG). Merino ewes were treated with intravaginal sponges and were subsequently used as vehicle-treated controls or were immunized to produce reciprocal anti-oestradiol-17B antibody titres less than 1000 or greater than 1000. Ewes were then treated with PMSG and the incidence of oestrus and ovulation, ovulation rate, and yield of embryos recorded. Treatment of immune ewes with 1200 i.u. PMSG resulted in both a higher proportion of ewes ovulating and a higher ovulation rate than in immune ewes treated with 600 i.u. (86% v. 67% and 13.4 v. 6.0 respectively). As anti-oestradiol-17B titres increased there was a reduction in the proportion of ewes exhibiting oestrus. The proportion of ewes ovulating decreased as antibody increased in ewes treated with 600 i.u. PMSG but not in those treated with 1200 i.u., suggesting an increased positive feedback of oestradiol with high PMSG doses. Fertilization rates were highest at the lower PMSG dose (68% v. 42%) and increased with increasing titre. Overall, there was no increase in ovulation rate or in yield of embryos over control values from either low (less than 1000) or high (greater than 1000) antibody titres.  相似文献   

13.
The experimental objective was to evaluate how a spontaneously formed corpus luteum (CL) differed in its response to prostaglandin (PG) F-2 alpha, given during the first 5 days after ovulation, from a CL induced during dioestrus with hCG. Sixteen Holstein heifers were used during each of 2 consecutive oestrous cycles. During the first cycle (sham cycle), heifers were given no PGF-2 alpha (control) or PGF-2 alpha (25 mg, i.m.) on Day 2, 4 or 6 (oestrus = Day 0). During the second cycle (hCG-treated cycle), heifers were given hCG (5000 i.u., i.m.) on Day 10, followed by no PGF-2 alpha (control) or PGF-2 alpha on Day 12, 14 or 16, corresponding to 2, 4 or 6 days after the ovulatory dose of hCG. A new ovulation was induced in 13 of 16 heifers given hCG on Day 10. Luteolysis did not occur immediately in heifers given PGF-2 alpha on Day 2 or 4 during the sham cycle, but concentration of progesterone in serum during the remainder of the cycle was lower in heifers given PGF-2 alpha on Day 4 than in sham controls or heifers given PGF-2 alpha on Day 2 (P less than 0.05). Luteolysis occurred immediately in heifers given PGF-2 alpha on Day 6 of the sham cycle or on Day 12, 14 or 16 of the hCG-treated cycle, with concentration of progesterone in serum decreasing to less than 1 ng/ml within 2 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ewes were treated with exogenous follicle-stimulating hormone (FSH) and oestrus was synchronized using either a dual prostaglandin F-2 alpha (PGF-2 alpha) injection regimen or pessaries impregnated with medroxy progesterone acetate (MAP). Natural cycling ewes served as controls. After oestrus or AI (Day 0), corpora lutea (CL) were enucleated surgically from the left and right ovaries on Days 3 and 6, respectively. The incidence of premature luteolysis was related (P less than 0.05) to PGF-2 alpha treatment and occurred in 7 of 8 ewes compared with 0 of 4 controls and 1 of 8 MAP-exposed females. Sheep with regressing CL had lower circulating and intraluteal progesterone concentrations and fewer total and small dissociated luteal cells on Day 3 than gonadotrophin-treated counterparts with normal CL. Progesterone concentration in the serum and luteal tissue was higher (P less than 0.05) in gonadotrophin-treated ewes with normal CL than in the controls; but luteinizing hormone (LH) receptors/cell were not different on Days 3 and 6. There were no apparent differences in the temporal patterns of circulating oestradiol-17 beta, FSH and LH. High progesterone in gonadotrophin-treated ewes with normal CL coincided with an increase in total luteal mass and numbers of cells, which were primarily reflected in more small luteal cells than in control ewes. Gonadotrophin-treated ewes with regressing CL on Day 3 tended (P less than 0.10) to have fewer small luteal cells and fewer (P less than 0.05) low-affinity PGF-2 alpha binding sites than sheep with normal CL. By Day 6, luteal integrity and cell viability was absent in ewes with prematurely regressed CL. These data demonstrate that (i) the incidence of premature luteal regression is highly correlated with the use of PGF-2 alpha; (ii) this abnormal luteal tissue is functionally competent for 2-3 days after ovulation, but deteriorates rapidly thereafter and (iii) luteal-dysfunctioning ewes experience a reduction in numbers of small luteal cells without a significant change in luteal mass by Day 3 and, overall, have fewer low-affinity PGF-2 alpha binding sites.  相似文献   

15.
Three experiments were conducted on anestrous ewes of Suffolk, Dorset, and Katahdin breeding to examine the potential value of GnRH to improve ovulation and pregnancy in response to introduction of rams. In Experiment 1, treatment with GnRH 2 d after treatment with progesterone (P4; 25 mg i.m.) at introduction of rams was compared to treatment with P4 alone at the time of introduction of rams. Treatment with GnRH did not increase percentages of ewes with a corpus luteum (CL) 14 d after introduction of rams, pregnant 32 d after treatment with PGF2α 14 d after introduction of rams, or percent of treated ewes lambing to all services. In Experiment 2, treatments with GnRH on day 2, 7, or both after introduction of rams were compared. Treatments did not differ in mean estrous response, percentages of ewes with a detectable CL or number of CL present on day 11, or mean pregnancy and lambing rates. Therefore, neither one nor two injections of GnRH at these times appeared to be effective to induce anestrous ewes to breed. In Experiment 3, treatments compared included GnRH 4 d before introduction of rams, GnRH 4 d before and 1 d after introduction of rams, ram introduction alone, and treatment with P4 (25 mg i.m.) at the time of introduction of rams. Percentages of ewes with concentrations of P4 greater than 1 ng/mL (indicating formation of CL had occurred) 7 d after ram introduction tended to be greater (P < 0.07) in ewes treated with GnRH or P4 than in control ewes treated with ram introduction alone. However, there was no difference in P4 concentrations between groups by day 11 or 12 after introduction of rams. Estrous response rates and percentages of ewes pregnant 95 d after PGF2α was administered (on day 12 after introduction of rams) tended to be greater (P = 0.08 and 0.06, respectively) in ewes treated with GnRH or P4 than in ewes exposed to rams only. There was no difference in response variables between ewes treated with GnRH 4 d before introduction of rams and ewes treated with GnRH 4 d before and 1 d after introduction of rams. In conclusion, treatment with GnRH 4 d before ram introduction showed promise as an alternative to treatment with P4 to improve the ovulatory response and reproductive performance of ewes introduced to rams during seasonal anestrus.  相似文献   

16.
Ewes were actively immunized against oestrone-6-(O-carboxymethyl)-oxime-bovine serum albumin, 17 beta-oestradiol-6-(O-carboxymethyl)oxime-bovine serum albumin or bovine serum albumin (controls). All 4 control ewes, 1 of 5 oestradiol-immunized ewes and 1 of 5 oestrone-immunized ewes had regular oestrous cycles. The other animals displayed oestrus irregularly or remained anoestrous. The plasma concentrations of LH and, to a lesser degree, FSH were increased relative to those in control ewes on Days 11-12 after oestrus or a similar total period after progestagen treatment in ewes not showing oestrus. The ovaries were examined and jugular venous blood, ovarian venous blood and follicular fluid were collected at laparotomy on Days 9-10 of the oestrous cycle. The ovaries of immunized ewes were heavier than those of control ewes. There were no CL in 5 of the immunized ewes but in the other 5 there were more CL than in the control ewes. Ovaries from 4 of 5 oestrone-immunized ewes contained luteinized follicles, while ovaries from 4 of 5 oestradiol-immunized ewes contained very large follicles with a degenerated granulosa and a hyperplastic theca interna. Both types of follicles produced progesterone, detectable in ovarian venous plasma and production of other steroids, particularly androstenedione, was also increased. The steroid-binding capacity of plasma was increased in the immunized ewes. The binding capacity of follicular fluid for oestradiol-17 beta and oestrone was similar to that of jugular venous plasma from the same ewes. These results suggest that immunization against oestrogens disrupts reproductive function by interfering with the feedback mechanisms controlling gonadotrophin secretion.  相似文献   

17.
The effect of day of induced luteolysis on follicle dynamics, oestrus behaviour and ovulatory response in goats was studied by administering cloprostenol on Day 5 (n=10), Day 11 (n=10), or Day 16 (n=10) after detection of oestrus. Stage of the luteal phase affected the interval from cloprostenol injection to onset of oestrus, with behavioural oestrus being observed earlier in goats treated early in the luteal phase (43.4+/-3.2 h on Day 5 versus 57.0+/-2.6 h on Day 11 and 56.7+/-2.7 h on Day 16, P<0.01). The group treated on Day 5 also tended to have a higher proportion of does which exhibited oestrus behaviour (P=0.07) and ovulation (P=0.06). In all the cycles, at least one of the ovulatory follicles arose from antral follicles present in the ovary at cloprostenol injection. In 66.7% of monovular cycles, the ovulatory follicle was the largest follicle on the day of luteolysis. In 33.3% of polyovulatory cycles, one of the ovulatory follicles was the largest one present when cloprostenol was administered. In 80% of polyovulatory cycles, the second ovulatory follicle was present on the day of luteolysis; but in the three remaining cycles, the second ovulatory follicle emerged later. This shows that the largest follicle may not exert dominance over other follicles in the goat. Evaluation of follicular dynamics in different phases of luteal activity in current experiment showed an attenuation of dominance in the mid-luteal period. In does treated early or late in the luteal phase, the number of new growing follicles decreased with time (P<0.01 and 0.05, respectively), the mean number of follicles reaching 4-5mm in size also decreased (P<0.001 and 0.01, respectively) and the number of regressing follicles increased (P<0.05). These effects did not reach statistical significance in does treated in the mid-luteal phase.  相似文献   

18.
The objective of this investigation was to examine the effects of 6-methoxy-benzoxazolinone (MBOA), a plant compound that resembles melatonin and alters ovarian function in rodents, in combination with PMSG on superovulatory responses in the cycling ewe. In Experiment I, St. Croix White ewes (n = 44) were synchronized (intra-vaginal progestin sponge) for 14days followed by hCG (750 IU) at 1 day after sponge removal (day 0). Ewes were assigned to one of six treatments administered on day -1: Control (no PMSG or MBOA; n = 7); PMSG (1000 IU i.m.; n = 7); Low MBOA (0.43 mg/kg i.m.; n = 7); High MBOA (1.15 mg/kg i.m.; n = 7); Low MBOA + PMSG (n = 8); High MBOA + PMSG (n = 8). In Experiment II, St. Croix White ewes (n = 24) were synchronized (progestin CIDR) for 14 days followed by hCG on day 1 after CIDR removal (day 0). Ewes were assigned to one of three treatments administered on day -1: Control (n = 8); PMSG (n = 8); Low MBOA+PMSG (n = 8). Laparoscopy was performed on day 9 to assess numbers of corpora lutea (CL) and visible follicles on each ovary. Blood samples were collected on day -13, -1, 0, 1, and days 6 or 7-12 for analysis of serum progesterone (P4) by RIA. Treatment groups receiving PMSG (alone or with MBOA) exhibited greater (P < 0.05) serum concentrations of P4 post-synchrony than Control and MBOA-only groups. Ovulation rate was lower (P < 0.05) for Control and MBOA-only treated ewes than ewes receiving PMSG. Ovulation rate in ewes treated with MBOA alone was similar (P > 0.10) to Controls, and PMSG treatment alone did not differ (P > 0.10) from MBOA + PMSG treatment. Ewes treated with PMSG alone did not differ (P > 0.10) in follicle number from High MBOA + PMSG treated ewes, however, Low MBOA + PMSG treated ewes had greater numbers of follicles at day 9 (P < 0.05) than the PMSG or High MBOA + PMSG groups in Experiment I; although, this was not replicated in Experiment II with numbers of follicles in the Low MBOA + PMSG group being similar (P > 0.10) to PMSG alone. In summary, the addition of MBOA in combination with PMSG as part of a synchronization-superovuation protocol in the ewe did not increase ovulation rate.  相似文献   

19.
Ovulation and luteal formation in primates are associated with the sustained synthesis of progesterone. The observed high intrafollicular concentrations of progesterone during the periovulatory interval raise the possibility that this steroid serves as a precursor for mineralocorticoids. The aim of this study was to determine if mineralocorticoids are synthesized by the luteinizing macaque follicle during controlled ovarian stimulation cycles in which follicular fluid and granulosa cell aspirates were obtained before or after an ovulatory hCG bolus. Follicular fluid concentrations of progesterone and 17alpha-hydroxyprogesterone increased within 3 h of an ovulatory hCG bolus. Their respective metabolites, 11-deoxycorticosterone (DOC) and 11-deoxycortisol, were not detectable before an ovulatory stimulus and increased starting at 6 h after hCG, while corticosterone and aldosterone were undetectable. Cortisol was present before and after hCG administration and had increased 2-fold at 24 h after an ovulatory stimulus. The expression of 21-hydroxylase (CYP21A2) mRNA increased within 3 h of hCG administration, while 11beta-hydroxylase-1 (CYP11B1) and 11beta-hydroxylase-2 (CYP11B2) mRNAs were not detectable. 11beta-Hydroxysteroid dehydrogenase-1 (HSD11B1) mRNA had increased at 12 h after hCG administration, and 11beta-hydroxysteroid dehydrogenase-2 (HSD11B2) had decreased by 3 h after hCG administration. Mineralocorticoid receptor mRNA levels did not change following hCG administration, while glucocorticoid receptor mRNA levels increased in response to an ovulatory stimulus.Treatment of granulosa cells with the mineralocorticoid receptor antagonist spironolactone blocked hCG-induced progesterone synthesis in vitro. These data indicate that macaque granulosa cells can synthesize mineralocorticoids in response to an ovulatory stimulus and that the mineralocorticoid receptor plays a key role in steroid synthesis associated with luteinization of macaque granulosa cells.  相似文献   

20.
One or two trophoblastic vesicles (0.4-2 mm diam.) from cow (Day 14) or ewe (Day 11-13) embryos without their disc were transferred, after culture for 24 h, into recipients. Each vesicle was transferred into the uterine horn ipsilateral to the CL by the cervical route in heifers and surgically in ewes on Day 12 of the oestrous cycle. In cows, daily measurements of plasma progesterone concentrations and checks for return to oestrus showed that the CL was maintained in 8 out of 12 recipients. These 8 cows had 25- to 37-day cycles while 4 recipient heifers returned to oestrus normally. Three recipients with an extended cycle were slaughtered. The dissected uterus showed that trophoblastic vesicles had developed in the uterine horns. In ewes, the serum progesterone curve, determined in each recipient, showed that the CL was maintained in 7 out of 12 recipients. These 7 ewes had 20- to 54-day cycles and the other 5 ewes had a normal cycle of 15-19 days comparable to that of 17.0 +/- 0.5 days for the 6 control ewes. Whenever the CL was maintained, high blood progesterone levels were followed by rapid luteolysis. In cattle and sheep, therefore, a trophoblastic vesicle transferred into the uterus can develop in vivo, secreting the embryonic signals when there is no embryonic disc control and transforming the cyclic CL into a CL of pregnancy in about 60% of the cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号