首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
We report here the cloning of the arginine repressor gene argR of Bacillus stearothermophilus and the characterization and purification to homogeneity of its product. The deduced amino acid sequence of the 16.8-kDa ArgR subunit shares 72% identity with its mesophilic homologue AhrC of Bacilus subtilis . Sequence analysis of B. stearothermophilus ArgR and comparisons with mesophilic arginine repressors suggest that the thermostable repressor comprises an N-terminal DNA-binding and a C-terminal oligomerization and arginine-binding region. B. stearothermophilus ArgR has been overexpressed in E. coli and purified as a 48.0-kDa trimeric protein. The repressor inhibits the expression of a B. stearothermophilus argC–lacZ fusion in E. coli cells. In the presence of arginine, the purified protein binds tightly and specifically to the argC operator, which largely overlaps the argC promoter. The purified B. stearothermophilus repressor proved to be very thermostable with a half-life of approximately 30 min at 90°C, whereas B. subtilis AhrC was largely inactivated at 65°C. Moreover, ArgR operator complexes were found to be remarkably thermostable and could be formed efficiently at up to 85°C, well above the optimal growth temperature of the moderate thermophile B. stearothermophilus . This pronounced resistance of the repressor–operator complexes to heat treatment suggests that the same type of regulatory mechanism could operate in extreme thermophiles.  相似文献   

5.
6.
7.
Inhibition of Escherichia coli B by homoarginine   总被引:3,自引:1,他引:2  
Homoarginine inhibits the growth of Escherichia coli B, but not of E. coli K-12. These two strains also differ in regard to repressibility of the arginine-forming enzymes. In K-12, arginine acts as a repressor whereas in B it does not. The latter difference is determined by different alleles of a regulator gene, arg R. In K-12 × B crosses, it was shown that the genetic determinant for homoarginine sensitivity is closely linked to or identical with arg R. Homoarginine-resistant mutants of B were isolated. The biochemical mechanism of homoarginine inhibition is not known. However, whether or not a strain is sensitive to homoarginine seems to depend on the intracellular level of arginine. In B this level is relatively low and inflexible as a result of the action of a repressor whose formation is determined by the B-specific allele of arg R.  相似文献   

8.
9.
10.
《Gene》1997,185(1):5-9
A bacterial expression vector is described for investigation of protein-protein interactions. Important features of the vector include partition of the cI repressor of bacteriophage λ into two functional domains separated by a multicloning site, and low level auto-regulated expression of human genes as C-terminal fusions to the DNA-binding domain of cI. Two different reporter systems have been employed; expression of either a suppressor tRNA or the alkaline phosphatase gene is dependent in both cases on the extent of repression of the major leftward promoter of lambda (λPL). The cAMP-dependent protein kinase (PKA) has been used as a model protein complex because both homodimer and heterodimer interactions are known to occur and because cAMP acts as a modulator of these interactions. It has been shown that the product of the repressor gene with newly incorporated expressed polylinker restriction sites still functions as a repressor. Substitution of the dimerisation domain of the cI repressor with the regulatory subunit of PKA does not diminish the ability of a cI fusion protein to repress expression of the reporter gene from λPL, indicating that the regulatory subunit of PKA dimerises the fusion protein in the Escherichia coli cytoplasm. Substitution instead with the catalytic subunit of PKA destroys the repression ability of cI, which is partially restored by separate expression of the regulatory subunit within the same cell. Complete restoration is achieved using a host E. coli strain which has lost its ability to synthesise cAMP and again this can be reversed by the addition of exogenous cAMP to these cells. Human PKA has been reconstituted in the E. coli cytoplasm, where all subunit interactions appear functional and respond as expected to the allosteric modulator cAMP.  相似文献   

11.
Summary A shuttle vector that could replicate in B. stearothermophilus, B. subtilis, and E. coli was constructed from B. stearothermophilus cryptic plasmid pSTK1, E. coli vector pUC19, and a thermostable kanamycin-resistance marker. This new vector was stably maintained in B. stearothermophilus at 67°C without selective pressure.  相似文献   

12.
Summary TheEscherichia coli-derivedtet regulatory elements from Tn10 have been used to construct vectors allowing the regulated, inducible, high-level expression of foreign genes inBacillus subtilis. While the wild-typetet promoters are inactive inB. subtilis, a synthetic mutanttet sequence with improved promoter consensus sequences and upstream poly A blocks shows activity inB. subtilis. The expression of an indicatorcat gene is inducible by sublethal amounts of tetracycline, indicating that the Tet repressor protein and thetet operator sequences are functional. However, the inducibility and maximal expression are not sufficient in this construct. To improve these properties atet operator sequence was placed between the —35 and —10 boxes of theB. subtilis-derived very strongxyl promoter. In the presence of atetR gene this construct is about 100-fold inducible and has high promoter strength, but some basal expression. This is avoided by placing a secondtet operator downstream resulting in no detectable basal expression at the expense of reduced inducibility. Using the system with a singletet operator inducible expression of glucose dehydrogenase fromB. megaterium was obtained at a very high level, and inducible expression of human single-chain urokinase-like plasminogen activator was achieved at the same level as inE. coli. Unlike inE. coli, the product was not degraded up to 4 h after induction inB. subtilis. These results demonstrate that the regulated expression vector described here should be very useful for production of foreign gene products fromB. subtilis cultures.  相似文献   

13.
14.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization ofβ-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl? phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl? wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

15.
16.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

17.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 μg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a pR promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

18.
The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap.  相似文献   

19.
The cDNA sequence for human renin was modified for use in the expression of the mature protein in E. coli. This was accomplished by the removal of the 5′ untranslated region and sequences coding for the signal peptide and a portion of the mature protein. An oligonucleotide linker was inserted which supplied the deleted coding information for the mature protein in a form optimized for translation in E. coli, in addition to an initiation codon. The modified gene was cloned into an expression vector consisting of the promoter from the tryptophan operon of E. coli and trp L Shine-Dalgarno sequence. In an appropriate host strain the expressed protein is the most prominent species present, and accounts for at least 10% of the total cellular protein. The expressed protein was verified to be renin by its molecular weight, ability to bind a renin antibody, and N-terminal amino acid sequence.  相似文献   

20.
To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号