首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
THE HETEROCYSTS OF BLUE-GREEN ALGAE (MYXOPHYCEAE)   总被引:1,自引:0,他引:1  
1. Heterocysts are found in many species of filamentous blue-green algae. They are cells of slightly larger size and with a more thickened wall than the vegetative cells. 2. Structural details of the heterocyst are: the presence of three additional wall layers, the absence of granules, sparse thylakoid network throughout, except at the poles where a dense coiling of membranes occurs. Other characters include the two pores at opposite poles ‘plugged’ with refractive material called the polar granule. 3. Peculiarities in the pigment composition of the heterocyst include an abundance of carotenoids and absence of phycobilins, and a short-wave form of chlorophyll a. 4. Unique glycolipids and an acyl lipid, not found in the vegetative cells of the algae or in other plant cells, are associated with the heterocyst. The glycolipids constitute the laminated layer of the wall and probably regulate diffusion of substances through it, whereas the acyl lipids are supposed to function as carriers and intermediates in the biosynthesis of the wall. 5. The heterocysts develop from vegetative cells, and the visible changes during differentiation include cell enlargement, synthesis of additional wall layers, disappearance of granules and reorientation and synthesis of the thylakoids. 6. Heterocysts are formed sequentially with characteristic cellular spacing during the growth of cultures in medium free from combined nitrogen. 7. Various sources of combined nitrogen inhibit heterocyst formation when supplied in the culture medium. Ammonium salts are among the most powerful inhibitors. Heterocysts are formed simultaneously and within a short period after transference of ammonia-grown non-heterocystous filaments to ammonia-free medium. 8. Incompletely differentiated heterocysts or proheterocysts are found in cultures grown in the presence of combined nitrogen. If two or more proheterocysts are close together generally a single one develops to maturity after a competitive interaction in medium free from combined nitrogen. This indicates that heterocyst formation is completed in two phases: phase I, synthesis and conservation of macromolecules, which takes place during growth in ammonia-containing medium: and phase 11, morphological differentiation of the heterocyst which is unaccompanied by growth in cell number. In the ammonia-free medium phase 11 quickly succeeds phase 1 and the whole process appears as a continuum. 9. Heterocyst formation shows a definite requirement for light. Red light favours heterocyst formation, whereas green and blue light do not. The effects of light seem to be mainly due to photosynthesis, although some effects may be morphogenetic. 10. Studies with metabolic inhibitors have revealed the involvement of photosynthesis, respiration and protein synthesis in heterocyst formation. Photosynthesis provides carbon skeletons, whereas ATP is most probably supplied by oxidative metabolism. 11. Various functions have been assigned to the heterocyst from time to time. Their role in akinete formation is suggested by (i) the formation of akinetes adjacent to the heterocysts and (ii) prevention of sporulation by detachment of the heterocysts from the vegetative cells (potential akinetes). Despite substantial evidence for such a role, it is not applicable to all akinete-forming genera. 12. Heterocysts are now widely believed to be the site of nitrogen fixation in blue-green algae. The main facts in favour of such a role are: (i) fixation of nitrogen by all heterocystous algae, (ii) inhibition of heterocyst formation by combined nitrogen and (iii) direct observations on acetylene reduction by isolated heterocysts. 13. Some non-heterocystous and unicellular algae, and vegetative cells of heterocystous algae fix nitrogen under microaerophilic conditions suggesting that absence of oxygen favours nitrogenase activity. Heterocysts lack the oxygen-evolving photo-system 11, possess oxidative enzymes, and reduce externally supplied tetrazolium salts - all indicating that they are the most suitable sites for harbouring nitrogenase in aerobic conditions. 14. Heterocysts probably originated in the Precambrian in response to the earth's changing environment and seem to be the first example of morphological differentiation in the plant kingdom.  相似文献   

2.
The present study gives evidence for the presence of cellulose in the heterocyst envelope of blue-green algae by means of electron microscopy, cellulase treatments and specific staining and demonstrates the role of this cellulose for the protection of the heterocyst nitrogenase during acetylene reduction. Experiments with lysozyme and cellulase suggest that nitrogen fixation in heterocystous blue-green algae under aerobic conditions is functionally effective only when an intimate relationship exists between vegetative cells and heterocysts and both cell types have intact wall structures.  相似文献   

3.
A unique feature, frequent heterocyst germination, has been observed in a nonsporulating mutant clone (of spontaneous origin) of the blue-green alga Gloeotrichia ghosei Singh. The controlling factor seems to be the presence of ammoniacal nitrogen in the medium. In addition, such a medium supports differentiation of successive crops of new heterocysts and their germination in the name medium and in the same algal culture. Contrary to previous observations with oilier blue-green algae, ammoniacal nitrogen does not seem to inhibit heterocyst differentiation in this alga. Both the parent alga and its mutant clone grow poorly in a nitrogen-free medium, which, although they are not completely free from bacteria, may indicate that they tire poor fixers or nonfixers. However, they form a large number of heterocysts under these conditions. The general conclusion is that the heterocysts of blue-green algae show a multiplicity of structure and function. In the present case they have reproductive function leading to direct propagation of the alga. The bearing of these findings on the interrelationships of the genera Gloeotrichia and Rivularia has been discussed. It has been concluded that the distinction between them is purely artificial.  相似文献   

4.
The effects of two amino acid analogues, viz., L-methionine-DL-sulphoximine and L-methyl-DL-methionine on growth, heterocyst differentiation and nitrogen fixation in the blue-green algaNostoc linckia have been studied with special reference to heterocyst spacing pattern. L-methionine-DL-sulphoximine strongly inhibited growth but produced an unusual number of heterocysts with changed heterocyst spacing pattern in both nitrogen-free and ammonium-containing media. L-methyl-DL-methionine was less effective than L-methionine-DL-sulphoximine. An attempt was also made to counteract the toxic effects of these analogues by supplying amino acids. Glutamine and methionine reversed the inhibitory effect of L-methionine-DL-sulphoximine while only methionine reversed the inhibitory effect of L-methyl-DL-methionine. Production of changed heterocyst spacing pattern in nitrogen-free and ammonium-containing media when supplemented with L-methionine-DL-sulphioximine suggests that ammonia may not be the inhibitor of heterocyst spacing pattern.  相似文献   

5.
A study was made of the effects of cadmium on the Cyanobacterium(blue-green alga) Anabaena cylindrica Lemm. as part of the paddy-fieldecosystem. A simple culture vessel has been designed, which allows periodicalmeasurement of growth (optical density) and nitrogenase activity(C2H2-C2H4 method). The influence of medium renewal was checked:the renewal of the medium maintained a higher growth rate andhigher nitrogen fixation ability. The cadmium effects were studied using six concentration levelsranging from 0 (control) to 2 parts 10–6 with renewedmedia (10% every day). No significant differences could be seen up to 1 part 10–6for nitrogenase activity and relative percentage of heterocysts(decreasing as a function of time from ±4% to ±1.5%). Inhibition of growth (OD and dry weight) was weak at 1 part10–6 but important at 2 parts 10–6; at this concentrationcadmium induced morphological and physiological effects: chlorosis,cellular malformations and destruction, and increase in heterocystfrequency (up to 7.72% ±0.19). The cadmium concentration factors were much lower than thosereported for other plants like Chlorella and water pests  相似文献   

6.
Cultures of the water fern Azolla pinnata R, Br. exposed for1 week to atmospheric NO2 (50, 100 or 200 nl l-1) induced additionallevels of nitrate reductase (NaR) protein and nitrite reductase(NiR) activity. At low concentrations of NO2 (50 nl l-1), nitratederived from NO2 provides an alternative N source for Azollabut does not affect rates of acetylene reduction. However, thesymbiotic relationship between Azolla and its endosymbiont,Anabaena azollae is only affected adversely by high concentrations(100 and 200 nl l-1) of atmospheric NO2. The resultant decreasesin rate of growth, nitrogen fixation, heterocyst formation,and overall nitrogen cycling are probably due to the additionalaccumulation of N products derived from higher levels of atmosphericNO2. Parallel increases in levels of polyamines suggest thatAzolla partially alleviates these harmful effects by incorporatingsome of the extra NO2-induced N into polyamines.Copyright 1994,1999 Academic Press Azolla-Anabaena symbiosis, nitrogen dioxide pollution, nitrogen metabolism, polyamines  相似文献   

7.
The variation of acetylene reduction activity and heterocystfrequency with culture age, was studied in five species of blue-greenalgae. The heterocyst frequency varied between 2.5 to 12.3 percent of total cells; and the acetylene reduction activity varied2.0-fold (average). It is suggested that an estimate of thenitrogen fixation rates in blue-green algae may be made by insitu heterocyst counts and acetylene reduction measurements.  相似文献   

8.
TYAGI  V. V. S. 《Annals of botany》1974,38(5):1107-1111
Sporulation in Anabaena doliolum begins in the middle of thetwo heterocysts and proceeds towards the heterocystous ends.Two inorganic nitrogen sources—potassium nitrate and ammoniumchloride inhibit sporulation, whereas glucose promotes it. Duringsporulation, the reductive ability of the heterocyst graduallydiminishes. It is concluded that spore differentiation in this alga is controlledby critical levels of nitrogen and of sugar in the cell. Thecritical levels are probably regulated by the heterocyst.  相似文献   

9.
Cultures of water fern Azolla pinnata R. Br. exposed for 1 weekto either 30, 50 or 80 nl l-1 O3 showed significant reductionsin rates of growth and N2 fixation, and had fewer heterocysts.Although the levels of glutamine synthetase (GS) and glutamatedehydrogenase (GDH) activity were decreased by low concentrationsof O3 exposures (30 or 50 nl l-1), significant increases inlevels of the same enzymes were caused by higher concentrationsof O3 (80 nl l-1). Increased levels of total protein, polyamines(putrescine and spermidine), and the xanthophyll-cycle precursorof abscisic acid (ABA), violaxanthin, were also found with higherlevels of O3 (80 nl l-1). Levels of ABA itself were significantlyincreased by low level O3 fumigation (30 nl l-1) but significantlydecreased by exposure to 80 nl l-1 O3. This may indicate thathigher levels of atmospheric O3 inhibit the final stages ofABA biosynthesis from violaxanthin.Copyright 1994, 1999 AcademicPress Abscisic acid, nitrogen assimilation, nitrogen fixation, ozone pollution, polyamines, violaxanthin  相似文献   

10.
2,4-Dichlorophenoxyacetic acid, a commonly used herbicide, increased the growth of the filamentous blue-green alga,Nostoc linckia at doses upto 100 μg /ml. The herbicidetreated N2-cultures showed enhanced heterocyst frequency and N2-growth. Thus, the herbicide stimulated algal growth at the expense of molecular nitrogen under aerobic growth conditions. Rifampicin caused chain formation of heterocysts. This was effectively counteracted by 2,4-dichlorophenoxyacetic acid, suggesting a biological interaction between them at the level of the heterocyst spacing control mechanism.  相似文献   

11.
The effects of boron deficiency on the ultrastructure and envelopecomposition of heterocysts in the filamentous cyanobacteriumAnabaena PCC 7119 were studied. Microscopic examination of boron-deficientcultures showed changes in heterocyst morphology. When thesecells were isolated and their glycolipid content determined,this specific component of the laminated layer of the heterocystenvelope was found to be lacking. The evidence presented supportsthe view that boron plays an essential role in the structureand function of the heterocyst envelope. Key words: Anabaena, boron, heterocysts, nitrogenase, oxygen-protection  相似文献   

12.
To investigate the role of ammonium-assimilating enzyme in heterocyst differentiation, pattern formation and nitrogen fixation, MSX-resistant and GS-impaired mutants of Anabaena 7120 were isolated using transposon (Tn5-1063) mutagenesis. Mutant Gs1 and Gs2 (impaired in GS activity) exhibited a similar rate of nitrogenase activity compared to that of the wild type under dinitrogen aerobic conditions in the presence and absence of MSX. Filaments of Gs1 and Gs2 produced heterocysts with an evenly spaced pattern in N2-grown conditions, while addition of MSX altered the interheterocyst spacing pattern in wild type as well as in mutant strains. The wild type showed complete repression of heterocyst development and nitrogen fixation in the presence of NO3 or NH4 +, whereas the mutants Gs1 and Gs2 formed heterocysts and fixed nitrogen in the presence of NO3 and NH4 +. Addition of MSX caused complete inhibition of glutamine synthetase activity in wild type but Gs1 and Gs2 remained unaffected. These results suggest that glutamine but not ammonium is directly involved in regulation of heterocyst differentiation, interheterocyst spacing pattern and nitrogen fixation in Anabaena.  相似文献   

13.
Growth and Nitrogen Fixation by Westiellopsis prolifica Janet   总被引:1,自引:0,他引:1  
PATTNAIK  H. 《Annals of botany》1966,30(2):231-238
The blue-green alga Westiellopsis prolifica Janet has been isolatedin unialgal bacteria-free culture. Evidence of the ability ofthis algs to fix elementary nitrogen was obtained by demonstrationof increase in total combined nitrogen in cultures by the micro-Kjeldahlmethod and also by the uptake of 15N as demonstrated by theuse of the mass spectrometer. The growth and nitrogen-fixingcapacity of the alga was studied in relation to temperatureand light intensity. Increase in dry weight was greatest at40° C but the optimum for nitrogen fixation was between30 and 35°C. A considerable proportion of the nitrogen fixedwas released in soluble organic form into the medium.  相似文献   

14.
In response to deprivation for fixed nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 provides a microoxic intracellular environment for nitrogen fixation through the differentiation of semiregularly spaced vegetative cells into specialized cells called heterocysts. The devH gene is induced during heterocyst development and encodes a product with characteristics of a trans-acting regulatory protein. A devH mutant forms morphologically distinguishable heterocysts but is Fox(-), incapable of nitrogen fixation in the presence of oxygen. We demonstrate that rearrangements of nitrogen fixation genes take place normally in the devH mutant and that it is Fix(+), i.e., has nitrogenase activity under anoxic conditions. The Fox(-) phenotype was shown by ultrastructural studies to be associated with the absence of the glycolipid layer of the heterocyst envelope. The expression of glycolipid biosynthetic genes in the mutant is greatly reduced, and heterocyst glycolipids are undetectable.  相似文献   

15.
The effect of ammonia and sulfide on rifampicin-induced heterocyst differentiation was studied in the nitrogen-fixing cyanobacteriumNostoc linckia. Aerobic growth with nitrogen gas of the cyanobacterium was greatly affected by rifampicin with formation of multiple heterocysts in chains in the filaments whereas ammonia in the medium reversed the rifampicin inhibition of growth and prevented the induction of heterocysts. In a sulfide medium the suppression exerted by rifampicin on aerobic growth with nitrogen gas and heterocyst induction was found to be considerably reduced. The results suggest two interesting points,viz. that (i) rifampicin interferes with the nitrogen-fixing function of heterocysts, and (ii) it checks the synthesis of an unknown heterocyst, inhibitor and thus permits the adjacent vegetative cells to differentiate into heterocysts in chains.  相似文献   

16.
STEWART  W. D. P. 《Annals of botany》1967,31(2):385-407
A technique for measuring nitrogen fixation in situ by naturalpopulations of blue-green algae is described. It involves exposingtest samples of known area to a gas mixture containing molecularnitrogen enriched with 15N and measuring the rate of incorporationof the isotope over a standard 24-h exposure period. The accuracyof the method is not seriously affected by changes in pH, pCO2and humidity which may occur during the exposure period, orby the degassing procedure used to remove air from the exposureflask prior to introduction of the isotope. Temperature andpN2 values inside the exposure flask are different from thoseto which natural populations are exposed outside, and correctionsfor these have to be made in calculating the final results.The minimum pN2 which allows optimum fixation by Calothrix scopulorumin the presence of 0.2 atm. oxygen is 0.4 atm. In an area ofthe supra-littoral fringe of a rocky shore and in an area ofsand dune-slack over a 12-month period nitrogen fixation ishigh in spring and autumn and negligible in winter. On the rockyshore fixation is low in summer; in the dune-slack summer nitrogenfixation is erratic. Nitrogen-fixing efficiency in terms ofnitrogen fixed per unit weight of test material is high whenalgal recolonization is occurring. The mean fixation rate perannum corresponds to approximately 2.5 g/m2/annum for the rockyshore. The nitrogen fixed per annum represents approximately41 per cent and 21 per cent of the mean total nitrogen presentper annum on the rocky shore and in open areas of the sand dune-slackrespectively.  相似文献   

17.
KUMAR  H. D. 《Annals of botany》1964,28(4):555-564
The unicellular blue-green alga Anacystis nidulans was repeatedlytreated with X-rays and radiophosphate (32P) during successivesubcultures. The strains so obtained were characterized by comparisonwith the untreated control strain, with respect to their resistanceto ultraviolet light, X-rays, streptomycin, and isoniazid. The32P-treated strain was found to be relatively more resistantto streptomycin than the untreated strain and the X-rayed strainwas found to be relatively rnore sensitive to isoniazid thanthe control. In old cultures, cells of the X-rayed strain weresignificantly smaller than those of the untreated strain. The effects of X-rays on cell- and heterocyst dimensions ofthe nitrogen-fixing alga Chlorogloea fritschii Mitra were studied.In the irradiated material the cell diameter and heterocystbreadth were greater, rather than smaller, than in unirradiatedmaterial.  相似文献   

18.
Fixation of Elemental Nitrogen by Marine Blue-green Algae   总被引:1,自引:0,他引:1  
STEWART  W. D. P. 《Annals of botany》1962,26(3):439-445
Three blue-green algae, Calothrix scopulorum, Nostoc entophytum,and Oscillatoria brevis, isolated from the upper littoral andsupralittoral fringe of the sea-shore were obtained in pureculture and tested for fixation of elemental nitrogen. Appreciablefixation by Calothrix and Nostoc was detected, a proportionof the total nitrogen fixed being liberated into the culturemedium. There was no evidence of fixation by Oscillatoria. Thisappears to be the first evidence that blue-green algae isolatedin pure culture from marine habitats fix nitrogen.  相似文献   

19.
Heterocysts are formed abundantly in cultures of Anabaena flos-aquaeA-37 which are fixing nitrogen. Fewer are formed in the presenceof NO3 ions, whereas none occurred in the presence ofNH4+ ions. The results indicate that heterocysts may have arole in nitrogen metabolism.  相似文献   

20.
The effect of IAA on growth, dinitrogen fixation, and heterocystsfrequency of Anabaena PCC 7119 and Nodularia sp. have been investigated.Concentrations of IAA ranging from 10–10 to 10–4M did not change the growth of Anabaena PCC 7119. Concentrationshigher than 10–4 M were inhibitory. Similar results werefound in Nodularia sp. although in this case the inhibitoryeffect appeared with 10–5M of IAA. Neither the nitrogenaseactivity nor the heterocysts frequency were enhanced by IAAtreatment. (Received June 17, 1986; Accepted January 22, 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号