首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.  相似文献   

2.
The reasons why using the arms can increase standing vertical jump height are investigated by computer simulations. The human models consist of four/five segments connected by frictionless joints. The head-trunk-arms act as a fourth segment in the first model while the arms become a fifth segment in the second model. Planar model movement is actuated by joint torque generators. Each joint torque is the product of three variable functions of activation level, angular velocity dependence, and maximum isometric torque varying with joint angle. Simulations start from a balanced initial posture and end at jump takeoff. Jump height is maximized by finding the optimal combination of joint activation timings. Arm motion enhances jumping performance by increasing mass center height and vertical takeoff velocity. The former and latter contribute about 1/3 and 2/3 to the increased height, respectively. Durations in hip torque generation and ground contact period are lengthened by swinging the arms. Theories explaining the performance enhancement caused by arms are examined. The force transmission theory is questionable because shoulder joint force due to arm motion does not precisely reflect the change in vertical ground reaction force. The joint torque/work augmentation theory is acceptable only at the hips but not at the knees and ankles because only hip joint work is considerably increased. The pull/impart energy theory is also acceptable because shoulder joint work is responsible for about half of the additional energy created by arm swings.  相似文献   

3.
This study used an optimization procedure to evaluate an 8-segment torque-driven subject-specific computer simulation model of the takeoff phase in running jumps for height. Kinetic and kinematic data were obtained on a running jump performed by an elite male high jumper. Torque generator activation timings were varied to minimize the difference between simulation and performance in terms of kinematic and kinetic variables subject to constraints on the joint angles at takeoff to ensure that joints remained within their anatomical ranges of motion. A percentage difference of 6.6% between simulation and recorded performance was obtained. Maximizing the height reached by the mass center during the flight phase by varying torque generator activation timings resulted in a credible height increase of 90 mm compared with the matching simulation. These two results imply that the model is sufficiently complex and has appropriate strength parameters to give realistic simulations of running jumps for height.  相似文献   

4.
This study used a computer simulation model to investigate various considerations that affect optimum peak height in a running jump. A planar eight-segment computer simulation model with extensor and flexor torque generators at five joints was formulated and customised to an elite male high jumper. A simulation was matched to a recorded high jumping performance by varying the activation profiles of each of the torque generators giving a simulated peak height of 1.99m compared to the recorded performance of 2.01 m. In order to maximise the peak height reached by the mass centre in the flight phase, the activation profiles were varied, keeping the same initial conditions as in the matching simulation. Optimisations were carried out without any constraints, with constraints on the angular momentum at take-off, with further constraints on joint angles, and with additional requirements of robustness to perturbations of activation timings. A peak height of 2.37 m was achieved in the optimisation without constraints. Introducing the three constraints in turn resulted in peak heights of 2.21, 2.14 and 1.99m. With all three types of constraints included, the peak height was similar to that achieved in the recorded performance. It is concluded that such considerations have a substantial influence on optimum technique and must be included in studies using optimised simulations.  相似文献   

5.
Strength, or maximum joint torque, is a fundamental factor governing human movement, and is regularly assessed for clinical and rehabilitative purposes as well as for research into human performance. This study aimed to identify the most appropriate protocol for fitting a maximum voluntary torque function to experimental joint torque data. Three participants performed maximum isometric and concentric-eccentric knee extension trials on an isovelocity dynamometer and a separate experimental protocol was used to estimate maximum knee extension angular velocity. A nine parameter maximum voluntary torque function, which included angle, angular velocity and neural inhibition effects, was fitted to the experimental torque data and three aspects of this fitting protocol were investigated. Using an independent experimental estimate of maximum knee extension angular velocity gave lower variability in the high concentric velocity region of the maximum torque function compared to using dynamometer measurements alone. A weighted root mean square difference (RMSD) score function, that forced the majority (73-92%) of experimental data beneath the maximum torque function, was found to best account for the one-sided noise in experimental torques resulting from sub-maximal effort by the participants. The suggested protocol (an appropriately weighted RMSD score function and an independent estimate of maximum knee extension angular velocity) gave a weighted RMSD of between 11 and 13 Nm (4-5% of maximum isometric torque). It is recommended that this protocol be used in generating maximum voluntary joint torque functions in all torque-based modelling of dynamic human movement.  相似文献   

6.
The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.  相似文献   

7.
Lower extremity muscle strength training is a focus of rehabilitation following total hip arthroplasty (THA). Strength of the hip abductor muscle group is a predictor of overall function following THA. The purpose of this study was to investigate the effects of hip abductor strengthening following rehabilitation on joint contact forces (JCFs) in the lower extremity and low back during a high demand step down task. Five THA patients performed lower extremity maximum isometric strength tests and a stair descent task. Patient-specific musculoskeletal models were created in OpenSim and maximum isometric strength parameters were scaled to reproduce measured pre-operative joint torques. A pre-operative forward dynamic simulation of each patient performing the stair descent was constructed using their corresponding patient-specific model to predict JCFs at the ankle, knee, hip, and low back. The hip abductor muscles were strengthened with clinically supported increases (0–30%) above pre-operative values in a probabilistic framework to predict the effects on peak JCFs (99% confidence bounds). Simulated hip abductor strengthening resulted in lower peak JCFs relative to pre-operative for all five patients at the hip (18.9–23.8 ± 16.5%) and knee (20.5–23.8 ± 11.2%). Four of the five patients had reductions at the ankle (7.1–8.5 ± 11.3%) and low back (3.5–7.0 ± 5.3%) with one patient demonstrating no change. The reduction in JCF at the hip joint and at joints other than the hip with hip abductor strengthening demonstrates the dynamic and mechanical interdependencies of the knee, hip and spine that can be targeted in early THA rehabilitation to improve overall patient function.  相似文献   

8.
Eight well-trained males carried out squat jump and countermovement jump with large (SJL and CMJL) and with small (SJS and CMJS) range of motion to study the influence of trunk position on joint recruitment pattern and jumping height. The main criteria in SJS and CMJS were to maintain trunk in near vertical position during execution. Joint angles, activation time, time at maximum joint velocity for ankle joint, knee joint and hip joint, vertical propulsion time and jumping height were determined using film analysis. The joint activation followed proximal to distal pattern in CMJL, SJL and CMJS, but the pattern was reversed in SJS. The ratio of active state and vertical propulsion time was similar for all joints (63.1 and 72.8%) in CMJL, SJL and CMJS except in SJS where the ratio was significantly less for hip (46.9%) and knee (51.9%). The difference between CMJL and SJL in jumping height was 6.9 ± 2.8 cm which is significantly less than that between CMJS and SJS (14.5 ± 5.3 cm). We concluded that knee joint and hip joint muscles could not contribute to the positive work during the push-off phase when the range of motion is small, the trunk is vertical and the activation level of the muscles is low.  相似文献   

9.
Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures (r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps (r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.  相似文献   

10.
We have developed a musculoskeletal model of the human lower extremity for computer simulation studies of musculotendon function and muscle coordination during movement. This model incorporates the salient features of muscle and tendon, specifies the musculoskeletal geometry and musculotendon parameters of 18 musculotendon actuators, and defines the active isometric moment of these actuators about the hip, knee, and ankle joints in the sagittal plane. We found that tendon slack length, optimal muscle-fiber length, and moment arm are different for each actuator, thus each actuator develops peak isometric moment at a different joint angle. The joint angle where an actuator produces peak moment does not necessarily coincide with the joint angle where: (1) muscle force peaks, (2) moment arm peaks, or (3) the in vivo moment developed by maximum voluntary contractions peaks. We conclude that when tendon is neglected in analyses of musculotendon force or moment about joints, erroneous predictions of human musculotendon function may be stated, not only in static situations as studied here, but during movement as well.  相似文献   

11.
The purpose of this study was to investigate the influence of changes in ankle joint angle on the mechanomyogram (MMG) amplitude of the human medial gastrocnemius (MG) muscle during voluntary isometric plantarflexion contractions. Ten healthy individuals were asked to perform voluntary isometric contractions at six different contraction intensities (from 10% to 100%) and at three different ankle joint angles (plantarflexion of 26°; plantarflexion of 10°; dorsiflexion of 3°). MMG signals were recorded from the surface over the MG muscle, using a 3-axis accelerometer. The relations between root mean square (RMS) MMG and isometric plantarflexion torque at different ankle joint angles were characterized to evaluate the effects of altered muscle mechanical properties on RMS MMG.We found that the relation between RMS MMG and plantarflexion torque is changed at different ankle joint angles: RMS MMG increases monotonically with increasing the plantarflexion torque but decreases as the ankle joint became dorsiflexed. Moreover, RMS MMG shows a negative correlation with muscle length, with passive torque, and with maximum voluntary torque, which were all changed significantly at different ankle joint angles.Our findings demonstrate the potential effects of changing muscle mechanical properties on muscle vibration amplitude. Future studies are required to explore the major sources of this muscle vibration from the perspective of muscle mechanics and muscle activation level, attributable to changes in the neural command.  相似文献   

12.
The purpose of this study was to investigate the relationship between variables of static and dynamic postural control as well as between isometric and dynamic muscle strength. A single-group design was used. Thirty-two middle-aged healthy adults (mean age: 56 ± 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance and of isometric (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor)/dynamic (i.e., countermovement jump [CMJ] height and power) lower extremity muscle strength. No significant associations were observed between variables of static and dynamic postural control (r = +0.128-0.341, p > 0.05) and between measures of balance and strength (r = -0.189 to +0.316, p > 0.05). Significant positive correlations were detected between variables of isometric and dynamic strength ranging from r = +0.361 to +0.501 (p < 0.05). Further, simple regression analyses revealed that a 10% increase in the mean CMJ height (3.1 cm) was associated with 44.4 N·m and 118.4 N·m·s better MIT and RTD, respectively. The nonsignificant correlations between static and dynamic balance measures and between balance and strength variables imply that static and dynamic postural control and balance and strength are independent of each other and may have to be tested and trained complementarily.  相似文献   

13.
Using optimal control techniques, maximum height jumps were simulated for humans who held their body rigid except for the ankle. Three dynamic models of ankle torque generation based on known calf muscle properties were used. Force and kinematics obtained from the simulations using nominal and perturbed parameters were compared with data obtained from humans who had performed this type of jump. One torque model incorporated the series elastic, force-length and force-velocity properties of muscle. Our results suggest that higher jumps would be achieved by those who have the most compliant and fastest contracting muscles. It was also found that height attained depended much more on the ability of muscles to generate isometric force at long lengths than at short lengths. Studies of forward and strictly vertical jumps using similar computer methods suggest that for any maximal jump the optimal strategy is first to achieve a unique state (position, velocity and acceleration) with the feet flat on the ground, and then to maximally activate one's calf muscles until lift-off.  相似文献   

14.
Tumbling is a dynamic movement requiring control of the linear and angular momenta generated during the approach and takeoff phases. Both of these phases are subject to some variability even when the gymnast is trying to perform a given movement repeatedly. This paper used a simulation model of tumbling takeoff to establish how well gymnasts can cope with perturbations of the approach and takeoff phases. A five segment planar simulation model with torque generators at each joint was developed to simulate tumbling takeoffs. The model was customised to an elite gymnast by determining subject specific inertia and torque parameters and a simulation was produced which closely matched a performance of a layout somersault by the gymnast. The performance of a layout somersault was found to be sensitive to the approach characteristics and the activation timings but relatively insensitive to the elasticity of the track and maximum muscle strength. Appropriate variation of the activation timings used during the takeoff phase was capable of coping with moderate perturbations of the approach characteristics. A model of aerial movement established that variation of body configuration in the flight phase was capable of adjusting for takeoff perturbations that would lead to rotation errors of up to 8%. Providing the errors in perceiving approach characteristics are less than 5% or 5 degrees and the errors in timing activations are less than 7ms, perturbations in the approach can be accommodated using adjustments during takeoff and flight.  相似文献   

15.
Relations between force-velocity characteristics of the multijoint movement of the lower limbs and vertical jump performance were investigated. A total of 67 untrained subjects (age: 19.54 +/- 2.38 years; height: 166.88 +/- 8.53 cm; body mass: 59.14 +/- 10.82 kg, mean +/- SD) performed isometric and isotonic knee-hip extension movements on a servo-controlled dynamometer, and the force-velocity relations were determined. Also, vertical jump (VJ) performance was measured with a jump gauge. The force-velocity relation was described with a linear function so that the maximum isometric force (Fmax) and the maximum unloaded velocity (Vmax) for the knee-hip extension movement were estimated by extrapolation. Maximum isometric force coincided with maximum isometric force, F(0) (F(0)/Fmax = 1.03 +/- 0.24). Maximum isometric force, Vmax, and maximum power output (Pmax) were positively correlated with VJ (r = 0.48, 0.68, and 0.76, respectively; p < 0.001). However, when Fmax, Vmax, and Pmax were normalized with body mass (BM), leg length (LL), and BM, respectively, no correlation was seen between Fmax/BM and VJ (r = 0.24, p > 0.05), and significant correlations were seen between Vmax/LL and VJ (r = 0.56, p < 0.001) and between Pmax/BM and VJ (r = 0.65, p < 0.001). On the other hand, Fmax and Vmax (r = 0.12, p > 0.05) and Fmax/BM and Vmax/LL (r = 0.05, p > 0.05) were not significantly correlated, indicating that Fmax and Vmax were independent variables. The present estimates of Fmax, Vmax, and Pmax can be useful for evaluating the actual performance of multijoint movement of the lower limbs. It is suggested that, although in untrained individuals the speed of movement might be a more important determinant of jump performance, jump performance ability has a potential to improve with increases in strength of the lower limb.  相似文献   

16.
Triple jumpers employ either an asymmetrical ‘single-arm’ action or symmetrical ‘double-arm’ action in the takeoff of each phase of the jump. This study investigated which technique is more beneficial in each phase using computer simulation. Kinematic data were obtained from an entire triple jump using a Vicon automatic motion capture system. A planar 13-segment torque-driven subject-specific computer simulation model was evaluated by varying torque generator activation timings using a genetic algorithm in order to match performance data. The matching produced a close agreement between simulation and performance, with differences of 3.8%, 2.7%, and 3.1% for the hop, step, and jump phases, respectively. Each phase was optimised for jump distance and an increase in jump distance beyond the matched simulations of 3.3%, 11.1%, and 8.2% was obtained for the hop, step, and jump, respectively. The optimised technique used symmetrical shoulder flexion whereas the triple jumper had used an asymmetrical arm technique. This arm action put the leg extensors into slower concentric conditions allowing greater extensor torques to be produced. The main increases in work came at the joints of the stance leg but the largest increases in angular impulse came at the shoulder joints, indicating the importance of both measures when assessing the impact of individual joint actions on changes in technique. Possible benefits of the double-arm technique include: cushioning the stance leg during impact; raising the centre of mass of the body at takeoff; facilitating an increase in kinetic energy at takeoff; allowing a re-orientation of the body during flight.  相似文献   

17.
Optimal control simulations of the standing long jump were developed to gain insight into the mechanisms of enhanced performance due to arm motion. The activations that maximize standing long jump distance of a joint torque actuated model were determined for jumps with free and restricted arm movement. The simulated jump distance was 40 cm greater when arm movement was free (2.00 m) than when it was restricted (1.60 m). The majority of the performance improvement in the free arm jump was due to the 15% increase (3.30 vs. 2.86 m/s) in the take-off velocity of the center of gravity. Some of the performance improvement in the free arm jump was attributable to the ability of the jumper to swing the arms backwards during the flight phase to alleviate excessive forward rotation and position the body segments properly for landing. In restricted arm jumps, the excessive forward rotation was avoided by "holding back" during the propulsive phase and reducing the activation levels of the ankle, knee, and hip joint torque actuators. In addition, swinging the arm segments allowed the lower body joint torque actuators to perform 26 J more work in the free arm jump. However, the most significant contribution to developing greater take-off velocity came from the additional 80 J work done by the shoulder actuator in the jump with free arm movement.  相似文献   

18.
This is the first part of 2 studies that systematically review the current state of research and structure the results of selected electromyostimulation (EMS) studies in a way that makes accurate comparisons possible. This part will focus on the effects of EMS on strength enhancement. On the basis of these results, part 2 will deal with the influence of the training regimen and stimulation parameters on EMS training effectiveness to make recommendations for training control. Out of about 200 studies, 89 trials were selected according to predefined criteria: subject age (<35 years), subject health (unimpaired), EMS type (percutaneous stimulation), and study duration (>7 days). To evaluate these trials, we first defined appropriate categories according to the type of EMS (local or whole body) and type of muscle contraction (isometric, dynamic, isokinetic). Then, we established the most relevant strength parameters for high-performance sports: maximal strength, speed strength, power, jumping and sprinting ability. Unlike former reviews, this study differentiates between 3 categories of subjects based on their level of fitness (untrained subjects, trained subjects, and elite athletes) and on the types of EMS methods used (local, whole-body, combination). Special focus was on trained and elite athletes. Untrained athletes were investigated for comparison purposes. This scientific analysis revealed that EMS is effective for developing physical performance. After a stimulation period of 3-6 weeks, significant gains (p < 0.05) were shown in maximal strength (isometric Fmax +58.8%; dynamic Fmax +79.5%), speed strength (eccentric isokinetic Mmax +37.1%; concentric isokinetic Mmax + 41.3%; rate of force development + 74%; force impulse + 29%; vmax + 19%), and power (+67%). Developing these parameters increases vertical jump height by up to +25% (squat jump +21.4%, countermovement jump +19.2%, drop jump +12%) and improves sprint times by as much as -4.8% in trained and elite athletes. With regard to the level of fitness, the analysis shows that trained and elite athletes, despite their already high level of fitness, are able to significantly enhance their level of strength to same extent as is possible with untrained subjects. The EMS offers a promising alternative to traditional strength training for enhancing the strength parameters and motor abilities described above. Because of the clear-cut advantages in time management, especially when whole-body EMS is used, we can expect this method to see the increasing use in high-performance sports.  相似文献   

19.
Eight male collegiate weightlifters (age: 21.2 +/- 0.9 years; height: 177.6 +/- 2.3 cm; and body mass: 85.1 +/- 3.3 kg) participated in this study to compare isometric to dynamic force-time dependent variables. Subjects performed the isometric and dynamic mid-thigh clean pulls at 30-120% of their one repetition maximum (1RM) power clean (118.4 +/- 5.5 kg) on a 61 x 121.9-cm AMTI forceplate. Variables such as peak force (PF) and peak rate of force development (PRFD) were calculated and were compared between isometric and dynamic conditions. The relationships between force-time dependent variables and vertical jump performances also were examined. The data indicate that the isometric PF had no significant correlations with the dynamic PF against light loads. On the one hand, there was a general trend toward stronger relationships between the isometric and dynamic PF as the external load increased for dynamic muscle actions. On the other hand, the isometric and dynamic PRFD had no significant correlations regardless of the external load used for dynamic testing. In addition, the isometric PF and dynamic PRFD were shown to be strongly correlated with vertical jump performances, whereas the isometric PRFD and dynamic PF had no significant correlations with vertical jump performances. In conclusion, it appears that the isometric and dynamic measures of force-time curve characteristics represent relatively specific qualities, especially when dynamic testing involves small external loads. Additionally, the results suggest that athletes who possess greater isometric maximum strength and dynamic explosive strength tend to be able to jump higher.  相似文献   

20.
The triple jump is a demanding athletics event that, after an approach run, consists of three consecutive phases: the hop, the bound, and the jump. During the involved three take-off actions a jumper is exposed to increased risk of injury due to the high impact forces from the ground and powerful muscle/tendon efforts, which are further reflected in the internal loads of the lower limb joints. While external ground reactions can possibly be measured using force platforms, in vivo measurements of the internal loads are practically not feasible. The purpose of the paper is to present the development of an effective formulation for the inverse dynamics simulation of the triple jump, based on the jumper dynamical model and non-invasive kinematic recordings of the movement. The developed simulation model serves for the analysis of all the triple jump phases, irrespective of whether the jumper is in flight or in contact with the ground with one of his feet, and is focused on effective assessment of the external reactions on the supporting leg as well as the muscle forces and joint reaction forces in the leg. Some numerical results of inverse dynamics simulation of the triple jump are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号