首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sought to compare the effects of the thiazolidinedione ciglitazone with the endogenous fatty acid PPARgamma agonists 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE), in U937 monocytic cells. Ciglitazone and 9-HODE inhibited cell proliferation and all three agonists increased cellular content of C18:0 fatty acids. Ciglitazone and 13-HODE resulted in an increased percentage of cells in S phase and ciglitazone reduced the percentage of cells in G2/M phase of cell cycle, whilst 9-HODE increased the percentage of cells in G0/1 and reduced the fraction in S and G2/M phases. 9-HODE selectively induced apoptosis in U937 cells, and increased PPARgamma2 gene expression. Induction of apoptosis by 9-HODE was not abrogated by the presence of the PPARgamma antagonist GW9662. Synthetic (TZD) and endogenous fatty acid ligands for PPARgamma, ciglitazone and 9- and 13-HODE, possess differential, ligand specific actions in monocytic cells to regulate cell cycle progression, apoptosis and PPARgamma2 gene expression.  相似文献   

2.
Oxidatively modified low density lipoproteins (LDL) have recently been proposed to play a role in atherogenesis by promoting foam cell formation and endothelial cell toxicity. The purpose of the present study was to determine whether modified LDL could also induce macrophage release of interleukin 1 beta (IL-1 beta), a cytokine which enhances vascular smooth muscle cell proliferation, another feature of the atherosclerotic process. LDL were oxidatively modified by incubation with either Cu2+ (Cu(2+)-LDL) or human peripheral blood monocyte-derived macrophages (M-LDL). Incubation of these modified LDL with macrophages (6 x 10(6) cells/culture) resulted in a dose-dependent induction of IL-1 beta release. At 300 micrograms protein/ml, Cu(2+)-LDL and M-LDL induced 422 and 333 pg of IL-1 beta/culture, respectively. Saponified Cu(2+)-LDL and M-LDL were shown to contain 9- and 13-hydroxyoctadecadienoic acid (HODE), lipid oxidation products of linoleate. When tested for activity in macrophage culture (3 x 10(6) cells/culture), it was found that 9-HODE and 13-HODE (final concentration 33 microM) induced the release of 122 and 43 pg of IL-1 beta/culture, respectively, whereas untreated cells released only 4 pg of IL-1 beta/culture. Incubation of macrophages with cholesteryl-9-HODE also induced IL-1 beta release; however, the degree of induction of IL-1 beta release by 9-HODE or its cholesteryl ester relative to modified LDL suggests that other components in oxidized LDL may also contribute to IL-1 beta induction. 9-HODE was rapidly taken up by macrophages, and the kinetics were similar to IL-1 beta release. A 1.5- to 6-fold increase in the level of IL-1 beta mRNA was detected as little as 3-h post-9-HODE treatment. The induction of IL-1 beta release from human monocyte-derived macrophages by 9-HODE and cholesteryl-9-HODE suggests a role for modified LDL, and its associated linoleate oxidation products, in vascular smooth muscle cell proliferation.  相似文献   

3.
4.
The aim of this study was to determine the apoptotic pathways and mechanisms involved in electronegative LDL [LDL(−)]-induced apoptosis in RAW 264.7 macrophages and the role of Nrf2 in this process. Incubation of RAW 264.7 macrophages with LDL(−) for 24 h resulted in dose-dependent cell death. Activated caspases were shown to be involved in the apoptosis induced by LDL(−); incubation with the broad caspase inhibitor z-VAD prevented apoptosis in LDL(−)-treated cells. CD95 (Fas), CD95 ligand (FasL), CD36 and the tumor necrosis factor (TNF) ligand Tnfsf10 were overexpressed in LDL(−)-treated cells. However, Bax, Bcl-2 and Mcl-1 protein levels remained unchanged after LDL(−) treatment. LDL(−) promoted hyperpolarization of the mitochondrial membrane, elevated reactive oxygen species (ROS) production and translocation of Nrf2 to the nucleus, a process absent in cells treated with native LDL. Elicited peritoneal macrophages from Nrf2-deficient mice exhibited an elevated apoptotic response after challenge with LDL(−), together with an increase in the production of ROS in the absence of alterations in CD36 expression. These results provide evidence that CD36 expression induced by LDL(−) is Nrf2-dependent. Also, it was demonstrated that Nrf2 acts as a compensatory mechanism of LDL(−)-induced apoptosis in macrophages.  相似文献   

5.
IL-4 has multiple biologic activities and it has been shown to have effects on B and T lymphocytes, mast cells, NK cells, and monocytes. We studied the influence of IL-4 on the expression of cell membrane determinants, in particular aminopeptidase-N (CD13) and Fc epsilon RIIb (CD23), on human peripheral blood monocytes. We compared the response of monocytes with the response of human alveolar macrophages and monocytic cell lines (U937 and THP1), as mature and more immature representatives of the mononuclear phagocyte system, respectively. A dose-dependent increase of the expression of CD13 Ag was observed when monocytes were cultured with IL-4. Kinetic analyses revealed that this induction was maximal after 2 to 3 days of culture and resembled the kinetics of IL-4-induced expression of Fc epsilon RIIb on monocytes. This IL-4-induced increase was absent when monocytes were cultured with IL-4 and an anti-IL-4 antiserum. Concomitantly, an IL-4-induced increase in leucine-aminopeptidase activity could be observed. Northern blot analysis showed that incubation of monocytes with IL-4 induced a marked increase in CD13 mRNA. Alveolar macrophages also exhibited an increase in CD13 Ag expression when exposed to IL-4. Surprisingly, IL-4 was unable to induce expression of Fc epsilon RIIb on alveolar macrophages. U937 and THP1 cells did not show an induction of CD13 Ag when cultured in the presence of IL-4. However, IL-4 did induce the expression of Fc epsilon RIIb on both cell lines, suggesting the presence of functional IL-4R. Our data demonstrate that IL-4 increases the expression of CD13 Ag on monocytes. This IL-4-induced increase can also be observed in more mature monocytic cells such as alveolar macrophages, but is absent in immature cells such as U937 or THP1 cells. This is functionally accompanied by an increase in leucine-aminopeptidase activity and may be part of the general activation of monocytes/macrophages by IL-4. In conclusion, the data suggest that IL-4 responsiveness, in particular the induction of CD13 Ag and Fc epsilon RIIb expression, may be dependent on the stage of maturation of monocytes/macrophages.  相似文献   

6.
Aminopeptidase N (CD13) was recently identified as a molecular target of the cholesterol absorption inhibitor Ezetimib. Regarding that CD13 is expressed in lipid rafts of monocytic cells, we have investigated whether Ezetimib influences raft function in these cells. Expression of raft-associated antigens (CD11b, CD13, CD14, CD16, CD36, and CD64) was followed by flow cytometry and/or immunoblot in human monocyte-derived macrophages in response to in vitro administration of Ezetimib. Cellular redistribution of CD13 was assessed by confocal imaging. Ezetimib significantly decreased the surface expression of CD13, CD16, CD64, and CD36; furthermore, it induced a shift of CD13 from plasma membrane to intracellular vesicles, and thus it quite likely modulated monocytic raft-assembly.  相似文献   

7.
Oxidation of low density lipoproteins (LDL) induced by incubation with Cu(2+) ions results in the formation of a heterogeneous group of aldehydic adducts on lysyl residues (Lys) of apolipoprotein B (apoB) that are thought to be responsible for the uptake of oxidized LDL (oxLDL) by macrophages. To define the structural and chemical criteria governing such cell recognition, we induced two modifications of lysines in LDL that mimic prototypic adducts present in oxLDL; namely, epsilon-amino charge-neutralizing pyrrolation by treatment with 2,5-hexanedione (hdLDL), and epsilon-amino charge-retaining pyridinium formation via treatment with 2,4,6-trimethylpyrylium (tmpLDL). Both modifications led to recognition by receptors on mouse peritoneal macrophages (MPM). To assess whether the murine scavenger receptor class A-I (mSR-A) was responsible for recognition of hdLDL or tmpLDL in MPM, we measured binding at 4 degrees C and degradation at 37 degrees C of these modified forms of (125)I-labeled LDL by mSR-A-transfected CHO cells. Although uptake and degradation of hdLDL by mSR-A-transfected CHO cells was quantitatively similar to that of the positive control, acLDL, tmpLDL was not recognized by these cells. However, both tmpLDL and hdLDL were recognized by 293 cells that had been transfected with CD36. In the human monocytic cell line THP-1 that had been activated with PMA, uptake of tmpLDL was significantly inhibited by blocking monoclonal antibodies to CD36, further suggesting recognition of tmpLDL by this receptor. Macrophage uptake and degradation of LDL oxidized by brief exposure to Cu(2+) was inhibited more effectively by excess tmpLDL and hdLDL than was more extensively oxidized LDL, consistent with the recognition of the former by CD36 and the latter primarily by SR-A.Collectively, these studies suggest that formation of specific pyrrole adducts on LDL leads to recognition by both the mSR-A and mouse homolog of CD36 expressed on MPM, while formation of specific pyridinium adducts on LDL leads to recognition by the mouse homolog of CD 36 but not by mSR-A. As such, these two modifications of LDL may represent useful models for dissecting the relative contributions of specific modifications on LDL produced during oxidation, to the cellular uptake of this heterogeneous ligand.  相似文献   

8.
9.
Uptake of modified lipoproteins by macrophages causes foam cell formation and promotes atherosclerosis. Atherogenic lipoproteins are cytotoxic and induce cell death under certain conditions but may also enhance macrophage survival. Macrophages treated with enzymatically modified LDL (E-LDL) were subjected to GeneChip analysis and the antiapoptotic gene TOSO was found induced. TOSO mRNA is upregulated and apoptosis is reduced in E-LDL but not in oxidized LDL (Ox-LDL) loaded macrophages. FLIP(L) abundance was suggested to mediate the antiapoptotic properties of TOSO; however, FLIP(L) was not changed. Ox-LDL is internalized predominantly by scavenger receptors such as CD36 while E-LDL particles are preferentially internalized by Fc- and complement-receptor dependent phagocytosis and internalization of phagobeads by macrophages upregulates TOSO. In COS-7 cells however, phagocytotic activity was not affected by TOSO. These data indicate that E-LDL-generated foam cells are protected from cell death most likely through the expression of TOSO by a FLIP(L) independent mechanism.  相似文献   

10.
Induction of CD95 ligand (CD95-L) may contribute to drug-induced apoptosis in chemosensitive leukemias and solid tumors. Here we report that induction of CD95-L and apoptosis by doxorubicin in leukemic and neuroblastoma cells is regulated by the redox state and reactive oxygen species (ROS). Preincubation of chemosensitive cells with antioxidants such as N-acetyl-cysteine (NAC) or glutathione (GSH), significantly reduced doxorubicin-induced apoptosis, hyperexpression of ROS, loss of mitochondrial membrane potential (DeltaPsim) and upregulation of CD95-L expression. Doxorubicin-resistant cells exhibited higher levels of GSH in comparison to chemosensitive cells and were deficient in hyperproduction of ROS, loss of DeltaPsim and upregulation of CD95-L in response to cytotoxic drugs. Downregulation of intracellular GSH concentrations reversed deficient drug-induced hyperproduction of ROS and CD95-L upregulation. In addition, overexpression of Bcl-XL in CEM cells blocked doxorubicin-triggered ROS and CD95-L expression. These findings suggest that induction of CD95-L by cytotoxic drugs is modulated by the cellular redox state and mitochondria derived ROS.  相似文献   

11.
12.
Macrophage-like development of myeloid leukemia cells which can be induced by agents such as phorbol esters (TPA) is accompanied by integrin expression and cell adhesion. Thus, in differentiating myeloid leukemia cells CD11b is predominantly expressed which can associate with CD18 to form the functional heterodimeric integrin Mac-1. To elucidate the role of cell adhesion during macrophage-like differentiation, we transfected human U937 myeloid leukemia cells with a vector containing the CD11b gene in antisense orientation. Expression of the CD11b antisense gene in stably transfected U937 cells (as-CD11b cells) resulted in an attenuated response to TPA. As-CD11b cells demonstrated poor adhesion to solid substrate upon TPA treatment in contrast to U937 control cells. Constitutive expression of c-myc in as-CD11b transfectants was higher than in control cells and failed to be repressed by TPA treatment. Moreover, unlike control cells, antisense transfectants failed to induce expression of early response genes such as c-jun and the redox factor ref-1 upon TPA stimulation. Consequently, the induction of monocytic differentiation markers such as the activity of alpha-naphthyl acetate esterase, the capacity to reduce nitroblue tetrazolium and the expression of the vimentin gene was much lower in antisense transfectants than in control U937 cells. According to the failure to undergo a monocytic differentiation program, TPA treatment of as-CD11b cells resulted in a progressively increasing amount of apoptotic cells whereas the differentiated population of U937 control cells remained alive. Taken together, these data suggest that the integrin-mediated (particularly CD11b-mediated) adhesion of myeloid leukemia cells in the course of induced monocytic differentiation is crucial for cell attachment, development of a monocytic phenotype and subsequent survival.  相似文献   

13.
The evidence for the promising potential for derivatives of Vitamin D (deltanoids) in the treatment of myeloid leukemias is increasing, but currently is not matched by the understanding of the precise mechanisms by which these anti-neoplastic effects are achieved. Unlike solid tumors in which growth retardation by deltanoids appears to result from inhibition of cell proliferation and the promotion of cell death by apoptosis, control of myeloid leukemia proliferation by deltanoids results from the induction of differentiation of the immature myelo-monocytic cells towards functional monocytic cells. We present here the accumulating evidence that a pathway that is initiated by deltanoid activation of Vitamin D receptor (VDR) and leads to monocytic differentiation of human myeloblastic HL60 cells, includes the MEK-ERK and JNK mitogen-activated protein kinases (MAPKs), their positive and negative regulators and a downstream effector C/EBPbeta. As in other cells, the abundance of VDR protein increases shortly after an exposure of HL60 cells to 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2) D(3)). Other early events include a parallel upregulation of kinase suppressor of Ras (KSR-1) and the activation of the ERK MAPK pathway and data suggest that KSR-1 acts to amplify the signal provided by low concentrations of 1alpha,25(OH)(2) D(3). Maintenance of monocytic differentiation may be enhanced by JNK, but diminished by p38, MAPK signaling. Downstream, one of the targets of these pathways is C/EBPbeta, which can directly interact with the promoter for CD14, a gene characteristically expressed in monocytes. Importantly, in freshly obtained acute myeloid leukemia (AML)-M2 cells exposed to PRI-2191, a novel deltanoid with a modified side chain, upregulation of C/EBPbeta paralleled the induction of monocytic differentiation. These data provide a basis for the hypothesis that deltanoid-induced upregulation of C/EBPbeta bypasses the block to granulocytic differentiation in myeloid leukemia cells by redirecting the cells to monocytic differentiation.  相似文献   

14.
15.
The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low‐density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product‐modified‐LDL (AGE‐LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE‐LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE‐LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein‐1 (MCP‐1). The results show that exposure of hSMC to AGE‐LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up‐regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP‐1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE‐LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro‐oxidant state (activation of NADPHox), lipid accumulation and a pro‐inflammatory state (expression of MCP‐1). These results may partly explain the contribution of AGE‐LDL and hSMC to the accelerated atherosclerosis in diabetes.  相似文献   

16.
Lipid peroxides induce expression of catalase in cultured vascular cells   总被引:3,自引:0,他引:3  
Various forms of oxidized low-density lipoproteins (Ox-LDL) are thought to play a major role in the development of atherosclerosis. The lipid components of Ox-LDL present a plethora of proatherogenic effects in in vitro cell culture systems, suggesting that oxidative stress could be an important risk factor for coronary artery disease. However, buried among these effects are those that could be interpreted as antiatherogenic. The present study demonstrates that various oxidants, including oxidized fatty acids and mildly oxidized forms of LDL (MO-LDL), are able to induce catalase (an antioxidant enzyme) expression in rabbit femoral arterial smooth muscle cells (RFASMC), RAW cells (macrophages), and human umbilical vein endothelial cells (HUVEC). In RFASMC, catalase protein, mRNA, and the enzyme activity are increased in response to oxidized linoleic acid (13-hydroperoxy-9,11-octadecadienoic acid [13-HPODE] and 13-hydroxy-9,11-octadecadienoic acid [13-HODE]), MO-LDL, or hydrogen peroxide (H(2)O(2)). Such an increase in catalase gene expression cannot totally be attributed to the cellular response to an intracellular generation of H(2)O(2) after the addition of 13-HPODE or 13-HODE because these agents induce a further increase of catalase as seen in catalase-transfected RFASMC. Taken together with the induction of heme oxygenase, NO synthase, manganese superoxide dismutase (Mn-SOD), and glutathione synthesis by oxidative stress, our results provide yet more evidence suggesting that a moderate oxidative stress can induce cellular antioxidant response in vascular cells, and thereby could be beneficial for preventing further oxidative stress.  相似文献   

17.
18.
19.
Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells.  相似文献   

20.
I Herr  D Wilhelm  T Bhler  P Angel    K M Debatin 《The EMBO journal》1997,16(20):6200-6208
We report here that anticancer drugs such as doxorubicin lead to induction of the CD95 (APO-1/Fas) system of apoptosis and the cellular stress pathway which includes JNK/SAPKs. Ceramide, which accumulates in response to different types of cellular stress such as chemo- and radiotherapy, strongly induced expression of CD95-L, cleavage of caspases and apoptosis. Antisense CD95-L as well as dominant-negative FADD inhibited ceramide- and cellular stress-induced apoptosis. Fibroblasts from type A Niemann-Pick patients (NPA), genetically deficient in ceramide synthesis, failed to up-regulate CD95-L expression and to undergo apoptosis after gamma-irradiation or doxorubicin treatment. In contrast, JNK/SAPK activity was still inducible by doxorubicin in the NPA cells, suggesting that activation of JNK/SAPKs alone is not sufficient for induction of the CD95 system and apoptosis. CD95-L expression and apoptosis in NPA fibroblasts were restorable by exogenously added ceramide. In addition, NPA fibroblasts undergo apoptosis after triggering of CD95 with an agonistic antibody. These data demonstrate that ceramide links cellular stress responses induced by gamma-irradiation or anticancer drugs to the CD95 pathway of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号