首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Role of osmoregulation in the actions of taurine   总被引:7,自引:0,他引:7  
Schaffer S  Takahashi K  Azuma J 《Amino acids》2000,19(3-4):527-546
Summary. Taurine regulates an unusual number of biological phenomena, including heart rhythm, contractile function, blood pressure, platelet aggregation, neuronal excitability, body temperature, learning, motor behavior, food consumption, eye sight, sperm motility, cell proliferation and viability, energy metabolism and bile acid synthesis. Many of these actions are associated with alterations in either ion transport or protein phosphorylation. Although the effects on ion transport have been attributed to changes in membrane structure, they could be equally affected by a change in the activity of the affected transporters. Three common ways of altering transporter activity is enhanced expression, changes in the phosphorylation status of the protein and cytoskeletal changes. Interestingly, all three events are altered by osmotic stress. Since taurine is a key organic osmolyte in most cells, the possibility that the effects of taurine on ion transport could be related to its osmoregulatory activity was considered. This was accomplished by comparing the effects of taurine, cell swelling and cell shrinkage on the activities of key ion channels and ion transporters. The review also compares the phosphorylation cascades initiated by osmotic stress with some of the phosphorylation events triggered by taurine depletion or treatment. The data reveal that certain actions of taurine are probably caused by the activation of osmotic-linked signaling pathways. Nonetheless, some of the actions of taurine are unique and appear to be correlated with its membrane modulating and phosphorylation regulating activities. Received January 25, 2000/Accepted January 31, 2000  相似文献   

2.
Drug-induced taurine depletion of rat heart led to the accumulation of free CoA, free carnitine and long-chain acylcarnitine, but a small decrease in long-chain fatty acyl-CoA. Although elevations in total tissue long-chain acylcarnitine levels have been linked to defective membrane function and the association of long-chain acylcarnitines with extramitochondrial membranes, these effects were absent in isolated sarcoplasmic reticulum prepared from taurine-depleted hearts. In contrast to the sarcoplasmic reticulum data, taurine depletion was associated with a significant decrease in ATP-dependent calcium uptake by isolated sarcolemmal vesicles. The major effect of taurine depletion on the sarcolemma was a 2-fold decrease in both the Vmax of calcium transport and the activity of the Ca2+ -stimulated ATPase. Sarcolemmal vesicles prepared from taurine-depleted hearts also exhibited a decreased capacity to transport calcium in exchange for sodium, although the initial rate of the process was unaffected by taurine depletion. Since incubation of sarcolemma from taurine-depleted hearts with taurine could not overcome the effects of taurine depletion, it was concluded that the effects of taurine were not caused by a direct interaction of it with the calcium pump. Possible mechanisms of taurine action are discussed.  相似文献   

3.
The effects of taurine on ATP-dependent calcium ion uptake and protein phosphorylation of rat retinal membrane preparations were investigated. Taurine (20 mM) stimulates ATP-dependent calcium ion uptake by twofold in crude retinal homogenates. In contrast, it inhibits the phosphorylation of specific membrane proteins as shown by acrylamide gel electrophoresis and autoradiography. The close structural analogue of taurine, 2-aminoethylhydrogen sulfate, demonstrates similar effects in both systems, i.e., stimulation of ATP-dependent calcium ion uptake and inhibition of protein phosphorylation, whereas isethionic acid and guanidinoethanesulfonate have no effect on either system. A P1 subcellular fraction of the retinal membrane preparation that contains photoreceptor cell synaptosomes has a higher specific activity for the uptake of calcium ions. Phosphorylation of specific proteins in the P1 fraction is also inhibited by the addition of 20 mM taurine. Taurine has no effect on retinal ATPase activities or on phosphatase activity, thus suggesting that it directly affects a kinase system.  相似文献   

4.
Taurine and Skeletal Muscle Disorders   总被引:2,自引:0,他引:2  
Taurine is abundantly present in skeletal muscle. We give evidence that this amino acid exerts both short-term and long-term actions in the control of ion channel function and calcium homeostasis in striated fibers. Short-term actions can be estimated as the ability of this amino acid to acutely modulate both ion channel gating and the function of the structures involved in calcium handling. Long-term effects can be disclosed in situations of tissue taurine depletion and are likely related to the ability of the intracellular taurine to control transducing pathways as well as homeostatic and osmotic equilibrium in the tissue. The two activities are strictly linked because the intracellular level of taurine modulates the sensitivity of skeletal muscle to the exogenous application of taurine. Myopathies in which ion channels are directly or indirectly involved, as well as inherited or acquired pathologies characterized by metabolic alterations and change in calcium homeostasis, are often correlated with change in muscle taurine concentration and consequently with an enhanced therapeutic activity of this amino acid. We discuss both in vivo and in vitro evidence that taurine, through its ability to control sarcolemmal excitability and muscle contractility, can prove beneficial effects in many muscle dysfunctions.  相似文献   

5.
Summary Angiotensin II modulates several aspects of cardiac function, including myocardial contractility, heart rate and myocyte growth. Most of these actions are intimately associated with alterations in calcium transport. Since taurine also modulates calcium transport, we examined possible interactions between taurine and angiotensin II at the level of the major cellular extruder of calcium, the Na-Ca2+ exchanger. Over a concentration range of 0.5–25 mM, Turne served as an effective inhibitor of angiotensin II-mediated stimulation of the exchanger. An Arrhenius plot of Na+-Ca2+ exchange activity revealed that angiotensin II (2 nM) increased transporter activity by reducing the activation energy of the transport process. Taurine (25 mM) inhibited the angiotensin II effect by partially preventing the reduction in activation energy. However, neither agent significantly altered the transition temperature, ruling out a change in membrane fluidity or an alteration in the rate limiting step of the transporter as a cause of the observed effects. Since the Na+-Ca2+ exchanger plays an important role in the handling of [Ca2+]i by the myocardium, the effect of taurine on angiotensin II's modulation of contractile function was also examined. Hearts perfused with buffer containing angiotensin 11 experienced a slight positive isotropic effect in the absence of taurine but this was converted to a negative inotropic effect in the presence of taurine. The data suggest that Turine inhibits some, but not all of the actions of angiotensin II. The possibility that a phosphorylation event is the site of the angiotensin II-taurine interaction is discussed.  相似文献   

6.
Abstract: The effects of ATP and taurine on the kinetics of calcium uptake in rat retinal membrane preparations were determined. ATP increased calcium uptake at low calcium ion concentrations. Addition of ATP plus taurine further increased calcium uptake. Cooperative relationships were observed for calcium uptake in the absence of ATP and taurine. In the presence of phosphate ions reciprocal plots demonstrated upward deflections from linear ty, while in the absence of phosphate ions downward deflections were noted. Addition of ATP plus taurine to the incubation system appeared to obliterate the cooperativity. Two uptake systems for calcium were observed.  相似文献   

7.
Taurine is one of the most abundant free amino acids in the central nervous system, where it displays several functions. However, its molecular targets remain unknown. It is well known that taurine can activate GABA-A and strychnine-sensitive glycine receptors, which increases a chloride conductance. In this study, we describe that acute application of taurine induces a dose-dependent inhibition of voltage-dependent calcium channels in chromaffin cells from bovine adrenal medullae. This taurine effect was not explained by the activation of either GABA-A, GABA-B or strychnine-sensitive glycine receptors. Interestingly, glycine mimicked the modulatory action exerted by taurine on calcium channels, although the acute application of glycine did not elicit any ionic current in these cells. Additionally, the modulation of calcium channels exerted by both taurine and glycine was prevented by the intracellular dialysis of GDP-β-S. Thus, the modulation of voltage-dependent calcium channels by taurine seems to be mediated by a metabotropic-like glycinergic receptor coupled to G-protein activation in a membrane delimited pathway.  相似文献   

8.
Physiological and experimental regulation of taurine content in the heart   总被引:3,自引:0,他引:3  
High concentrations of taurine are found in the heart and these are increased still further in congestive heart failure. It appears that taurine is largely derived by influx from the circulation, and this influx is stimulated by cyclic AMP, whereas influx of alpha-amino acids is unaffected. Influx occurs via a saturable transport system that has strict requirements for ligands. Other substances are transported by this system, including beta-alanine, hypotaurine, guanidoethyl sulfonate, and, to a lesser extent, guanidinopropionate; and these are competitive antagonists for taurine transport. Guanidinoethyl sulfonate, in vivo, markedly lowers taurine concentrations over the course of a few days in all tissues examined in the rat and mouse (but not in the guinea pig). The concentrations of other amino acids are unaffected. Guanidinoethyl sulfonate may prove to be a useful substance in the study of the biological role of taurine, in view of its ability to regulate taurine content in a number of species. Despite the numerous pharmacological actions of taurine, its physiological function in the heart remains problematic. One function appears to be the modulation of calcium movements. The inotropic actions of taurine and beta-adrenergic activation may be linked via the cyclic AMP-dependent regulation of taurine influx.  相似文献   

9.
A postulated zinc-taurine complex, with a zinc affinity intermediate between that for glutamic acid dehydrogenase and the calcium binding protein(s), provides an explanation for a series of seemingly unrelated biochemical and physiological effects of taurine. The proposed complex suggests a central mechanism for the action of taurine, such as a bicarbonate and pH dependent influence on calcium and zinc movements (and vice versa), the osmoregulatory role of taurine, and its effect on the excitation threshold.  相似文献   

10.
The effect of taurine on calcium binding to isolated rat heart sarcolemmal membrane was examined. Taurine was observed to increase calcium binding to the low affinity sites in both high sodium-low potassium and low sodium-high potassium buffers. Taurine was also seen to antagonize the inhibition of calcium binding to the sarcolemma caused by both verapamil and lanthanum. Nevertheless, membrane structural changes due to taurine could not be detected using the spin label ESR probe 2N14. A possible regulatory role of taurine is discussed.  相似文献   

11.
The effects of taurine in the mammalian nervous system are numerous and varied. There has been great difficulty in determining the specific targets of taurine action. The authors present a review of accepted taurine action and highlight recent discoveries regarding taurine and calcium homeostasis in neurons. In general there is a consensus that taurine is a powerful agent in regulating and reducing the intracellular calcium levels in neurons. After prolonged L-glutamate stimulation, neurons lose the ability to effectively regulate intracellular calcium. This condition can lead to acute swelling and lysis of the cell, or culminate in apoptosis. Under these conditions, significant amounts of taurine (mM range) are released from the excited neuron. This extracellular taurine acts to slow the influx of calcium into the cytosol through both transmembrane ion transporters and intracellular storage pools. Two specific targets of taurine action are discussed: Na+-Ca2+ exchangers, and metabotropic receptors mediating phospholipase-C.  相似文献   

12.
We examined the effects of cholesteryl hemisuccinate on membrane fluidity and angiotensin II (AII) actions in bovine adrenal glomerulosa cells. Incubating cells with cholesteryl hemisuccinate decreased membrane fluidity and markedly inhibited AII binding. The effect on binding was characterized by a decrease in AII receptor number. The effects of AII on phosphatidyl inositol turnover and calcium fluxes, proposed intermediaries of AII actions on aldosterone secretion, were less impaired than AII binding by cholesteryl hemisccinate. AII stimulation of aldosterone secretion was preserved despite the decrease in AII binding after cholesteryl hemisuccinate treatment. These results indicate that AII binding can be dissociated from its effects on aldosteronogenesis by a reagent that alters membrane fluidity.  相似文献   

13.
Taurine, a ubiquitous endogenous sulfur-containing amino acid, possesses numerous pharmacological and physiological actions, including antioxidant activity, modulation of calcium homeostasis and antiapoptotic effects. There is mounting evidence supporting the utility of taurine as a pharmacological agent against heart disease, including chronic heart failure (CHF). In the past decade, angiotensin II blockade and β-adrenergic inhibition have served as the mainstay in the treatment of CHF. Both groups of pharmaceutical agents decrease mortality and improve the quality of life, a testament to the critical role of the sympathetic nervous system and the renin--angiotensin system in the development of CHF. Taurine has also attracted attention because it has beneficial actions in CHF, in part by its demonstrated inhibition of the harmful actions of the neurohumoral factors. In this review, we summarize the beneficial actions of taurine in CHF, focusing on its antagonism of the catecholamines and angiotensin II.  相似文献   

14.
Taurine demonstrates multiple cellular functions including a central role as a neurotransmitter, as a trophic factor in CNS development, in maintaining the structural integrity of the membrane, in regulating calcium transport and homeostasis, as an osmolyte, as a neuromodulator and as a neuroprotectant. The neurotransmitter properties of taurine are illustrated by its ability to elicit neuronal hyperpolarization, the presence of specific taurine synthesizing enzyme and receptors in the CNS and the presence of a taurine transporter system. Taurine exerts its neuroprotective functions against the glutamate induced excitotoxicity by reducing the glutamate-induced increase of intracellular calcium level, by shifting the ratio of Bcl-2 and Bad ratio in favor of cell survival and by reducing the ER stress. The presence of metabotropic taurine receptors which are negatively coupled to phospholipase C (PLC) signaling pathway through inhibitory G proteins is proposed, and the evidence supporting this notion is also presented.  相似文献   

15.
Summary. Red Bull energy drink has become extraordinarily popular amongst college students for use as a study aid. We investigated the combined effects of Red Bull’s two active ingredients, caffeine and taurine, on short term memory. Studies on the effects of these two neuromodulators on memory have yielded mixed results, and their combined actions have not yet been investigated. In this double-blind study, college student subjects consumed either caffeine and taurine pills or a placebo and then completed a memory assessment. Heart rate and blood pressure were monitored throughout the testing period. The combination of caffeine and taurine had no effect on short term memory, but did cause a significant decline in heart rate and an increase in mean arterial blood pressure. The heart rate decline may have been caused by pressure-induced bradycardia that was triggered by caffeine ingestion and perhaps enhanced by the actions of taurine.  相似文献   

16.
The effects of long-chain fatty acids (four saturated and two unsaturated fatty acids, one derivative) on phase transitions of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes were examined in the low concentration region, and the results were compared with those for an inhalation anesthetic. The effects of all fatty acids on the pre- and main-transition temperatures of the DPPC bilayer membrane appeared in the concentration range of μM order while that of the anesthetic appeared in the mM order. The appearance modes of these ligand actions were significantly different from one another. The three differential partition coefficients of the ligands between two phases of the DPPC bilayer membrane were evaluated by applying the thermodynamic equation to the variation of the phase-transition temperatures. The DPPC bilayer membranes showed the different receptivity for the ligands; the saturated fatty acids had an affinity for gel phase whereas unsaturated fatty acids and an anesthetic had an affinity for liquid-crystalline phase to the contrary. In particular, the receptivity for the ligands in the gel phase markedly changed depending on kinds of ligands. The interaction modes between the DPPC and fatty acid molecules in the gel phase were considered from the hexagonal lattice model. The disappearance compositions of the pretransition by the fatty acids coincided with the compositions at which the membrane is all covered by the units in each of which two fatty acids molecules are regularly distributed in the hexagonal lattice in a different way, and the distribution depended on the chain length and existence of a double bond for the fatty acids. The interpretation did not hold for the case of the anesthetic at all, which proved that a number of anesthetic molecules act the surface region of the bilayer membrane nonspecifically. The present study clearly implies that DPPC bilayer membranes have high ability to recognize kinds of ligand molecules and can discriminate among them with specific interaction by the membrane states.  相似文献   

17.
Erratum     
The ionophoretic capabilities of dioleoylphosphatidic acid (DOPA) for transporting calcium across phospholipid bilayers have been investigated. Calcium uptake by large unilamellar vesicles is shown to depend on the presence of DOPA. This uptake is sensitive to the nature and concentration of calcium chelators in the vesicle interior, indicating that accumulation results from DOPA-mediated translocation of calcium across the membrane. Further, it is shown that characteristics of DOPA-mediated Ca2+ uptake are similar to those observed for the fungal calcium ionophore, A23187.  相似文献   

18.
Triton X-100 (in concentrations which did not cause a significant solubilization of membrane material) caused aggregation of the intramembrane particles of human erythrocyte ghosts.Ghosts from which the extrinsic proteins had been removed by alkali treatment showed a temperature-induced aggregation of the particles. With virtually no spectrin present, the particles in these stripped ghosts could still be aggregated by manipulations with ionic strength and pH, or by the addition of calcium.Recombinant vesicles were made from a Triton X-100 extract and a mixture of phospholipids with a composition which resembled that of the inner monolayer of erythrocyte membrane. In these recombinants the same manipulations with ionic strength and pH and the addition of calcium caused a rearrangement of the particles, resulting in the appearance of particle-free areas. In recombinants prepared from a Trixon X-100 extract and egg phosphatidylcholine the lateral distribution of the particles was not altered by these manipulations.It is concluded that in the erythrocyte membrane the intramembrane particles can be aggregated by effects of external agents on lipid components. In this light the role of spectrin in stabilizing the membrane by interactions with lipids in the inner monolayer is discussed.  相似文献   

19.
When hearts were reperfused with Ca++ after a short period of Ca++-free perfusion, irreversible loss of electrical and mechanical activity was observed. This phenomenon, first described by Zimmerman and Hulsmann, was termed the "calcium paradox". Chizzonite and Zak recently reported that rat hearts exhibited an age-dependent response in a calcium paradox model. The taurine (2-aminoethanesulfonic acid) content of hearts in the newborn animal is high, and decreases rapidly during the first few days of life. The present experiments were performed to test whether the myocardial taurine content was closely linked to an age-dependent response in the calcium paradox model, using post-hatched chicks. The mechanical dysfunction of the heart was much more severe in 9-day-old post-hatched chicks than in 2-day-old chicks when the hearts were subjected to the calcium paradox. Myocardial taurine content was lower in the 9-day-old chicks than in the 2-day-old chicks. The age-related response to the calcium paradox was partially protected by oral pretreatment with taurine, and there was a small increase in myocardial taurine level. It is proposed that myocardial taurine is one factor in the protection against the calcium paradox phenomenon.  相似文献   

20.
Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in humans and plays an important role in several essential biological processes such as bile acid conjugation, maintenance of calcium homeostasis, osmoregulation and membrane stabilization. Moreover, attenuation of apoptosis and its antioxidant activity seem to be crucial for the cytoprotective effects of taurine. Although these properties are not tissue specific, taurine reaches particularly high concentrations in tissues exposed to elevated levels of oxidants (e.g., inflammatory cells). It suggests that taurine may play an important role in inflammation associated with oxidative stress. Indeed, at the site of inflammation, taurine is known to react with and detoxify hypochlorous acid generated by the neutrophil myeloperoxidase (MPO)–halide system. This reaction results in the formation of less toxic taurine chloramine (TauCl). Both haloamines, TauCl and taurine bromamine (TauBr), the product of taurine reaction with hypobromous acid (HOBr), exert antimicrobial and anti-inflammatory properties. In contrast to a well-documented regulatory role of taurine and taurine haloamines (TauCl, TauBr) in acute inflammation, their role in the pathogenesis of inflammatory diseases is not clear. This review summarizes our current knowledge concerning the role of taurine, TauCl and TauBr in the pathogenesis of inflammatory diseases initiated or propagated by MPO-derived oxidants. The aim of this paper is to show links between inflammation, neutrophils, MPO, oxidative stress and taurine. We will discuss the possible contribution of taurine and taurine haloamines to the pathogenesis of inflammatory diseases, especially in the best studied example of rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号