首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germination, growth and survival of green Berberis thunbergii and its purple ornamental form, Berberis thunbergii var. atropurpurea, were compared in five natural environments (full sun meadow, edge of woods, moist woods, dry woods, pine woods) to determine whether these two forms have a similar ability to naturalize. Berberis thunbergii and Berberis thunbergii var. atropurpurea had similar germination rates of about 25% at the end of 3 years. Most of the seed germination occurred in year one (89%), with a small amount of additional germination in year two (10%), and even less in year three (1%). Greatest germination occurred in the moist woods and full sun meadow sites and the least occurred at the pine woods site. Germination was reduced in the pine woods environment by the thick leaf litter layer present there. Barberry seedling survival during the first year was only 22% and survival dropped to 11.3% by the end of 2 years. Purple barberry seedlings had a lower 2 year survival rate than green barberry. There was no difference in seedling growth between purple and green barberry seedlings, but surviving seedling growth rates at the five environments were comparable. Seedlings achieved maximum growth in the edge of woods environment, but also grew well in the full sun meadow environment. At harvest, the full sun meadow had the greatest number of seedlings present, while no seedlings survived in the pine woods site.  相似文献   

2.
Japanese barberry (Berberis thunbergii de Candolle) is a thorny, perennial, exotic, invasive shrub that is well established throughout much of the eastern United States. It can form dense thickets that limit native herbaceous and woody regeneration, alter soil structure and function, and harbor increased blacklegged tick (Ixodes scapularis Say) populations. This study examined a potential causal mechanism for the link between Japanese barberry and blacklegged ticks to determine if eliminating Japanese barberry could reduce tick abundance and associated prevalence of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner). Japanese barberry was controlled at five study areas throughout Connecticut; adult ticks were sampled over three years. Each area had three habitat plots: areas where barberry was controlled, areas where barberry remained intact, and areas where barberry was minimal or absent. Sampled ticks were retained and tested for B. burgdorferi presence. At two study areas, temperature and relative humidity data loggers were deployed in each of the three habitat plots over two growing seasons. Intact barberry stands had 280 ± 51 B. burgdorferi-infected adult ticks/ha, which was significantly higher than for controlled (121 ± 17/ha) and no barberry (30 ± 10/ha) areas. Microclimatic conditions where Japanese barberry was controlled were similar to areas without barberry. Japanese barberry infestations are favorable habitat for ticks, as they provide a buffered microclimate that limits desiccation-induced tick mortality. Control of Japanese barberry reduced the number of ticks infected with B. burgdorferi by nearly 60% by reverting microclimatic conditions to those more typical of native northeastern forests.  相似文献   

3.
Japanese barberry (Berberis thunbergii DC.) is a widespread invasive plant that remains an important landscape shrub represented by ornamental, purple-leaved forms of the botanical variety atropurpurea. These forms differ greatly in appearance from feral plants, bringing into question whether they contribute to invasive populations or whether the invasions represent self-sustaining populations derived from the initial introduction of the species in the late 19th century. In this study we used amplified fragment length polymorphism (AFLP) markers to determine whether genetic contributions from B. t. var. atropurpurea are found within naturalized Japanese barberry populations in southern New England. Bayesian clustering of AFLP genotypes and principal coordinate analysis distinguished B. t. var. atropurpurea genotypes from 85 plants representing five invasive populations. While a single feral plant resembled B. t. var. atropurpurea phenotypically and fell within the same genetic cluster, all other naturalized plants sampled were genetically distinct from the purple-leaved genotypes. Seven plants from two different sites possessed morphology consistent with Berberis vulgaris (common barberry) or B. ×ottawensis (B. thunbergii × B. vulgaris). Genetic analysis placed these plants in two clusters separate from B. thunbergii. Although the Bayesian analysis indicated some introgression of B. t. var. atropurpurea and B. vulgaris, these genotypes have had limited influence on extant feral populations of B. thunbergii.  相似文献   

4.
5.
Improving natural regeneration of bamboos after they die following mass flowering is critical for conservation of giant pandas. However, little is known about factors that affect seed germination and seedling growth of bamboos. We studied seed germination and seedling growth in Fargesia qinlingensis, which mass flowered in a giant panda habitat in the Qinling Mountains of China in early 2000, in laboratory and greenhouse conditions. Seed germination rate was tested under light and dark conditions 5 and 12 months after seed collection. Germination rate displayed no significant difference under light or dark conditions 5 months after seed collection, but was significantly greater in the dark than under light 12 months after seed collection, suggesting light inhibition of seed germination. A 2×2 factorial design was conducted to test the effects of nitrogen (N fertilization and non-N fertilization) and light [full sun and shade (i.e., 14% full sun)] on seedling growth and biomass allocation. N fertilization significantly increased seedling growth, resulting in greater seedling height, more branches, more leaves, greater stem biomass, and greater leaf biomass. Seedlings under 14% full sun conditions had a significantly lower percentage of biomass allocated to the stem. The root/shoot ratio was significantly greater in non-N/shade than non-N/full sun, while there was no significant difference in this ratio between N/shade and N/full sun, suggesting that nitrogen fertilization compensated for the effect of shade on biomass allocation. Our results suggest that N fertilization could be employed in restoration of F. qinlingensis stands after die-off following mass flowering.  相似文献   

6.
Seedling recruitment is a multi-phased process involving seed production, dispersal, germination, seedling establishment and subsequent survival. Understanding the factors that determine success at each stage of this process is of particular interest to scientists and managers seeking to understand how invasive species spread and persist, and identify critical stages for management. To understand the factors and processes influencing recruitment of the invasive species Berberis darwinii Hook. (Darwin’s barberry), temporal and spatial patterns of seed dispersal, germination and seedling establishment were examined. Seed dispersal from a large source population was measured over two fruiting seasons, and subsequent patterns of seedling emergence and survival within each cohort were measured. Seed longevity was tested under both natural and artificial conditions. Seeds were widely dispersed by birds, up to 450 m from the source population. Dispersal was essential to seedling establishment, as few seedlings survived beneath the parent canopy. Seeds were relatively short-lived in the soil under both field and glasshouse conditions, with few surviving for more than 1 year. Patterns of newly emerged seedlings largely reflected patterns of seed rain, but seedling survival was significantly affected by distance from source population, seedling density and light environment. These results suggest that recruitment of B. darwinii is dependent on dispersal of seeds to favourable microsites. Management priorities should include the removal of fruiting plants, and seedling control in highlight areas.  相似文献   

7.
Summary The crown light environments of saplings of two Costa Rican rain forest tree species were simultaneously compared. The species, Dipteryx panamensis (Pitt.) Record & Mell., a relatively shade-intolerant species, and Lecythis ampla Miers, a shade-tolerant species, have contrasting growth and branching patterns. Quantum sensors were placed throughout the crowns of saplings up to 2.5 m tall and quantum fluxes were recorded with microloggers for seven-day periods. The shade-intolerant species had total quantum flux densities 35% larger than those of the shade-tolerant species, but totals for both species were less than 2% of full sun. More than 90% of the quantum flux densities measured within the crowns of both species were less than 25 mol m-2s-1. Lateral light was an important component of daily quantum flux totals; for saplings of both species, the half-hour with the maximum average irradiance for the day frequently occurred in mid-morning or midafternoon. Despite dissimilar crown and leaf display, there was no difference in the overall variability of irradiance within the crowns of the two species. However, quantum fluxes received within the crowns differed substantially in both species. Within-crown locations differed significantly from day to day because of variation in weather conditions. Daily total quantum flux densities and totals expressed as a percent of full sun were significantly correlated with height growth over the previous 12 months.  相似文献   

8.
The mitochondrial DNA (mtDNA) phylogeny of Japanese Pandaka species (Perciformes: Gobiidae) was inferred from partial nucleotide sequences of the mitochondrial 12S and 16S rRNA genes (1083bp). The resultant mtDNA tree showed two major clades (clade I and clade II), which were inconsistent with the present taxonomic classification. One of the major clades was further divided into two geographical groups, distributed on the Japanese Major Islands (clade I-A) and from Amami-oshima Island to Iriomote Island (clade I-B). The mtDNA haplotypes in clade II were found only on Iriomote Island. The mtDNA divergences in clade I indicated that the Japanese Major Island (clade I-A) and Ryukyu (clade I-B) groups have been geographically isolated from each other for millions of years, based on the putative molecular divergence rate. The geographical distributions of mtDNA haplotypes in clade I-A and clade I-B also suggested that Pandaka gobies had not dispersed to distant offshore islands, indicating that their geographical differentiation may be closely associated with the geological history of the Japanese and Ryukyu Archipelagos.This revised version was published online in January 2005 with corrections to the repetition of the 1st authors name.  相似文献   

9.
In early stages of primary succession, colonizing plants can create resource patches that influence the abundance and distribution of other species. To test whether different colonizing shrubs generate contrasting patches on coastal sand dunes, we compared soil characteristics and light availability under the nitrogen-fixing shrub Lupinus arboreus, under the non-nitrogen-fixing shrub Artemisia pycnocephala, and between shrubs on dunes at a site in northern California. Concentrations of inorganic nitrogen and net nitrogen mineralization rates were generally 1–10 times greater in soil under Lupinus than under Artemisia or between shrubs. Soil water content was mostly lower under shrubs. Mean photon flux density near ground level was reduced by at least 80% at 35 cm inside shrub canopies. Topography appeared to have more effect on soil moisture but less direct effect on nitrogen availability than did Lupinus. However, Lupinus probably increases nitrogen levels more on higher, drier dunes. Microhabitats under and between nitrogen-fixing shrubs constitute a mosaic of individually poor but complementary patches in which high levels of light and moderate levels of soil nitrogen are present but tend not to occur together.  相似文献   

10.
The effect of high light intensity on photosynthesis and growth of Sphagnum moss species from Alaskan arctic tundra was studied under field and laboratory conditions. Field experiments consisted of experimental shading of mosses at sites normally exposed to full ambient irradiance, and removal of the vascular plant canopy from above mosses in tundra water track habitats. Moss growth was then monitored in the experimental plots and in adjacent control areas for 50 days from late June to early August 1988. In shaded plots total moss growth was 2–3 times higher than that measured in control plots, while significant reductions in moss growth were found in canopy removal plots. The possibility that photoinhibition of photosynthesis might occur under high-light conditions and affect growth was studied under controlled laboratory conditions with mosses collected from the arctic study site, as well as from a temperate location in the Sierra Nevada, California. After 2 days of high-light treatment (800 mol photons m–2 s–1) in a controlled environmental chamber, moss photosynthetic capacity was significantly lowered in both arctic and temperate samples, and did not recover during the 14-day experimental period. The observed decrease in photosynthetic capacity was correlated (r 2=0.735, P<0.001) with a decrease in the ratio of variable to maximum chlorophyll fluorescence (F v/F m) in arctic and temperate mosses. This relationship indicates photoinhibition of photosynthesis in both arctic and temperate mosses at even moderately high light intensities. It is suggested that susceptibility to photoinhibition and failure to photoacclimate to higher light intensities in Sphagnum spp. may be related to low tissue nitrogen levels in these exclusively ombrotrophic plants. Photoinhibition of photosynthesis leading to lowered annual carbon gain in Sphagnum mosses may be an important factor affecting CO2 flux at the ecosystem level, given the abundance of these plants in Alaskan tussock tundra.  相似文献   

11.
Oriental bittersweet (Celastrus orbiculatus Thunb.) is a non-indigenous, invasive woody vine in North America that proliferates in disturbed open sites. Unlike most invasive species, C. orbiculatus exhibits a sit and wait strategy by establishing and persisting indefinitely in undisturbed, closed canopy forest and responding to canopy disturbance with rapid growth, often overtopping trees. We compared fruit fates of C. orbiculatus and native American holly (Ilex opaca). We also explored mechanisms for this sit and wait invasion strategy by testing the effect of C. orbiculatus fruit crop density on removal rates and by examining the influence of seed treatment and light intensity on seed germination and seedling growth. More C. orbiculatus than I. opaca fruits became damaged, and damage occurred earlier. More fruit fell from C. orbiculatus than I. opaca, but removal rates by frugivores did not differ (76.0 ± 4.2% vs 87.5 ± 3.7%, respectively). Density (number of fruits in a patch) of C. orbiculatus did not influence removal rates. Scarification (bird-ingestion) of C. orbiculatus seed delayed germination but seeds germinated in similar proportion to manually defleshed seeds (sown either singly or all seeds from a fruit). Germination of seeds within intact fruits was inhibited and delayed compared to other treatments. Seed treatment did not affect seedling growth. The proportion of seeds germinating and time until germination was similar among five light intensity levels, ranging from full sun to closed-canopy. Seedlings in >70% photosynthetically active radiation (PAR) had more leaves, heavier shoots, and longer, heavier roots than seedlings at lower PAR levels. Results show that most (>75%) C. orbiculatus seeds are dispersed, seedlings can establish in dense shade, and plants grow rapidly when exposed to high light conditions. Control strategies for this highly invasive species should likely focus on minimizing seed dispersal by vertebrates.  相似文献   

12.
Nitrogen Limits an Invasive Perennial Shrub in Forest Understory   总被引:4,自引:0,他引:4  
Plant invasions can harm communities by domination of one or more vegetation layers. We studied whether Japanese barberry (Berberis thunbergii DC.) is limited by soil acidity or nitrogen availability in its domination of relatively undisturbed forest understories. In two sites, one more acid than the other, we applied lime, urea, or a sawdust–sugar mix to replicate plots in established barberry populations. We predicted that the acid site would be pH or cation limited, while the less acid site was N limited, unless N availability was inherently higher before treatment. Barberry above-ground net primary production (NPP) was estimated by a combination of harvest and allometric analysis. Foliar N increased in the urea treatment and was proportional to incubation estimates of net N mineralization and nitrification. Foliar Ca and P were unaffected by the treatments. Foliar K was proportional to foliar N. The more acid site had higher foliar Mn, but otherwise the sites differed little. Barberry NPP was proportional to pre-treatment biomass. The ratio of net production to pre-treatment woody biomass (relative production rate) increased with foliar N and soil N availability and decreased when soil N was immobilized by sawdust and sugar. There was no effect of soil pH or cation status on barberry growth, although a correlation with foliar K was reflected by the maintenance of a constant K : N ratio. Although more severely acid sites may be less invasible than those studied here, N availability is the primary limitation to invasive dominance in this landscape. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The photosynthetic response of juveniles of Decussocarpus rospigliosii, an emergent primary forest species and shade tolerant in its juvenile stages and Alchornea triplinervia, a gap-colonizing species of tropical cloud forest in Venezuela was studied. Daily courses of microenvironmental variables and gas exchange under contrasting light conditions (gap and understory) were carried out in their natural environment and transplanted to different light regimes (shade and sun) in the field. The photosynthetic response and some anatomical characteristics of plants from different treatments were analyzed in the laboratory. Photosynthetic rates were low for both species, and were negative during some diurnal periods, related to the low photosynthetically active radiation levels obtained at both gap (6% of total radiation) and understory (2%). A. triplinervia shows higher rates (1.5–3.0 molm-2 -1) than D. rospigliosii (0.7–1.1 molm-2s-1). Both species showed increased photosynthetic rates when grown in gaps. A. triplinervia did not adjust its maximum photosynthetic rates to the prevailing light conditions. In contrast, D. rospigliosii responded to increased light levels. Both species showed low light compensation points when grown under total shade. There was a partial stomatal closure generally during midday in D. rospigliosii. A. triplinervia presented lower leaf conductances, transpiration rates and lesser stomatal control. Some leaf anatomical characteristics, in both species, were affected by variations in the light regime (i.e. increased leaf thickness, leaf specific weight and stomatal density). These results suggest that both species have the ability to respond to variations in their natural light environments, therefore maintaining a favorable carbon balance during the day.  相似文献   

14.
Biological invasions can alter ecosystem functions such as litter decomposition and nutrient cycling, but little is known about how invader abundance influences the impact on the ecosystem. It is often assumed that impacts are proportional to invasion density, but this assumption has never been tested and has little justification. We tested the hypothesis that the microbial community structure and function of a mixed hardwood forest soil changed after invasion by Japanese barberry (Berberis thunbergii), an invasive shrub commonly found in eastern hardwood forests, and that changes were proportional to the density of invasion. We constructed microcosms with mixtures of native and invasive leaf litter, and measured microbial community structure (phospholipid fatty acids) and function (litter decomposition). Decomposition was linearly related to the degree of invasion (R 2?=?0.945), but the ratio of bacteria to fungi exhibited a strongly non-linear, threshold response (R 2?=?0.513). These results indicate that impacts of Japanese barberry invasion are not always proportional to invasion density. This finding has implications for the study of biological invasions as well as practical implications for the management of exotic invasive species.  相似文献   

15.
Adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), tend to aggregate and feed most heavily in the upper canopy of host plants, defoliating them from the top down. We examined characteristics of linden (Tilia cordata L.) foliage from different canopy zones and tested two hypotheses that might account for vertical stratification of feeding by this vagile, polyphagous folivore. In the field, P. japonica caused 4–12 times more damage to upper canopy leaves in full sunlight than to lower canopy leaves in sun or shade. However, this within-tree pattern apparently cannot be explained by differences in nutritional parameters (protein, water, and sugar content) or defensive properties (toughness, tannins) of leaves. Furthermore, beetles did not discriminate between foliage from different canopy zones in laboratory choice tests, nor were fecundity or longevity higher for beetles fed upper canopy, sun-exposed leaves. Clonal grape plants suspended from vertical posts in the field at 3.65, 1.83 or 0 m above ground showed a top-down defoliation pattern identical to that seen in linden trees. This suggests that the height of foliage per se strongly affects initial orientation and attack by P. japonica. Recent related studies have shown that both sexes of P. japonica are strongly attracted to host volatiles induced by feeding of conspecific beetles. We suggest that Japanese beetles begin to feed in the upper canopy for reasons unrelated to host nutritional variation (e.g., behavioral thermoregulation, visual orientation to the host silhouette), and that top-down defoliation follows as additional beetles are attracted to feeding-induced volatiles acting as aggregation kairomones.  相似文献   

16.
Differences in reaction distance to prey fish by piscivorous salmonids can alter predator–prey interactions under different visual conditions. We compared reaction distances of three piscivorous salmonids commonly found in western lakes: cutthroat trout, Oncorhynchus clarki utah, rainbow trout, O. mykiss, and the nonnative lake char, Salvelinus namaycush. Reaction distances to salmonid prey were measured as functions of light and turbidity in a controlled laboratory setting. In addition, predation rates and swimming speeds of lake char preying on juvenile cutthroat trout were measured experimentally under a range of light levels. Reaction distances for cutthroat trout and rainbow trout increased rapidly as light levels increased, reaching relatively constant reaction distances at higher light levels. Reaction distances for lake char were similar to cutthroat trout and rainbow trout at the lower light levels; however, lake char reaction distances continued to increase with increasing light intensity to asymptote at distances 65% higher than those for both cutthroat and rainbow trout. Predation rates by lake char were low for the darkest light levels, increased rapidly under low light levels (0.50–0.75lx), and then declined to an intermediate rate at all higher light levels. Swimming speeds by lake char also increased rapidly from extremely low light conditions to a peak and declined to an intermediate level at light levels above 1.00lx. These results suggest that, above the saturation intensity threshold, piscivorous lake char react to fish prey at greater distances than do cutthroat trout and rainbow trout. These differences may help explain the decline of native trout following the introductions of nonnative lake char in lakes and reservoirs of western North America.  相似文献   

17.
The effects of transfer from low to high ligh intensity on membrane bound electrontransport reactions of Rhodospirillum rubrum were investigated. The experiments were performed with cultures which did not form bacteriochlorophyll (Bchl) for about two cell mass doublings during the initial phase of adaptation to high light intensity. Lack of Bchl synthesis causes a decrease of Bchl contents of cells and membranes. Also, the cellular amounts of photosynthetically active intracytoplasmic membranes decrease.In crude membrane fractions containing both cytoplasmic and intracytoplasmic membranes the initial activities of NADH oxidizing reactions increase only slightly (about 1.2 times) per protein, but the initial activities of succinate oxidizing reactions decrease (multiplied by a factor of 0.7). On a Bchl basis activities of NADH oxidizing reactions increase 3.4 times while activities of succinate dependent reactions increase 1.9 times. With isolated intracytoplasmic membranes activities of NADH as well as succinate dependent reactions increase to a comparable extent on a Bchl basis (about 1.8 times) and stay nearly constant on a protein basis. Cytochrome c oxidase responds like succinate dependent reactions. The data indicate that in cells growing under the conditions applied NADH oxidizing electron transport systems are incorporated into both, cytoplasmic and intracytoplasmic membranes, while incorporation of succinate oxidizing systems is confined to intracytoplasmic membranes only.Activities of photophosphorylation and succinate dependent NAD+ reduction in the light increase per Bchl about 1.8 times. On a Bchl basis increases of the fast light induced on reactions at 422 nm and increases of soluble cytochrome c 2 levels are comparable to increases of photophosphorylations and succinate dependent activities. But increases of slow light off reactions at 428 nm and of b-type cytochrome levels become three times greater then increases of cytochrome c 2 reactions and levels. These results infer that although electrontransport reactions of intracytoplasmic membranes change correlated to each other, Bchl, cytochrome c 2 and b-type cytochromes cellular levels are independent of each other. Furthermore, the data indicate that cytochrome c 2 rather than b-type cytochrome is involved with steps rate limiting for photophosphorylation.Abbreviations Bchl bacteriochlorophyll - DCIP 2,6-dichlorophenolindophenol  相似文献   

18.
Summary Shade needles of hybrid larch (Larix decidua × leptolepis) had the same rates of photosynthesis as sun needles per dry weight and nitrogen, and a similar leaf conductance under conditions of light saturation at ambient CO2 (Amax). However, on an area basis, Amax and specific leaf weight were lower in shade than in sun needles. Stomata of sun needles limited CO2 uptake at light saturation by about 20%, but under natural conditions of light in the shade crown, shade needles operated in a range of saturating internal CO2 without stomatal limitation of CO2 uptake. In both needle types, stomata responded similarly to changes in light, but shade needles were more sensitive to changes in vapor pressure deficit than sun needles. Despite a high photosynthetic capacity, the ambient light conditions reduced the mean daily (in summer) and annual carbon gain of shade needles to less than 50% of that in sun needles. In sun needles, the transpiration per carbon gain was about 220 mol mol–1 on an annual basis. The carbon budget of branches was determined from the photosynthetic rate, the needle biomass and respiration, the latter of which was (per growth and on a carbon basis) 1.6 mol mol–1 year–1 in branch and stem wood. In shade branches carbon gains exceeded carbon costs (growth + respiration) by only a factor of 1.6 compared with 3.5 in sun branches. The carbon balance of sun branches was 5 times higher per needle biomass of a branch or 9 times higher on a branch length basis than shade branches. The shade foliage (including the shaded near-stem sun foliage) only contributed approximately 23% to the total annual carbon gain of the tree.  相似文献   

19.
Summary Crassulacean acid metabolism (CAM) was studied in a tropical epiphytic fern, Pyrrosia longifolia, from a fully sun-exposed and from a very shaded site in Northern Queensland, Australia. Measurements of instantaneous net CO2 exchange showed carbon gain via CO2 dark fixation with some net CO2 uptake also occuring during late afternoon, in both sun and shade fronds. Maximum rates of net CO2 uptake and the nocturnal increase in titratable acidity were lower in shade than in sun fronds. 13C values of sun and shade fronds were not significantly different, and ranged between-14 and-15 suggesting that, in the long term, carbon gain was mainly via CO2 dark fixation. Sun fronds had a higher light compensation point of photosynthesis than shade fronds but the same quantum yield. Yet there was no acclimation of photosynthetic O2 evolution, (measured at 5% CO2) in sun and shade fronds and photosynthesis saturated at between 200 and 400 mol quanta m-2 s-1. Use of higher light intensities for photosynthesis of sun fronds was probably precluded by low nutrient availability. Total nitrogen was less than 1% of dry weight in fully expanded sun and shade fronds. Exposure of shade fronds to full sunlight for 6 h led to a 60% decline in the quantum yield of photosynthesis and to a decline in variable fluorescence measured at room temperature. Photoinhibition by high light was also observed in Hoya nicholsoniae, a rainforest climber growing in deep shade. This species also exhibited CAM as demonstrated by nocturnal net CO2 uptake, nocturnal acidification and a 13C value of-14. Photosynthetic O2 evolution in this species was saturated at 2.5% of full sunlight. Two species of Dendrobium (Orchidaceae) from sun-exposed sites, one species exhibiting CAM and the other one exhibiting net CO2 uptake exclusively during daytime via conventional C3 photosynthesis, showed similar light response curves and the same quantum yield for photosynthetic O2 evolution.  相似文献   

20.
Blooms ofChrysochromulina breviturrita Nich. (Prymnesiophyceae) have been found to be restricted to lakes above pH 5.5 even though the alga is able to tolerate pH 4.0 in laboratory culture. A possible explanation is the increased transparency in acidifying lakes and a sensitivity ofC. breviturrita to high light intensities. A comparison was made withMougeotia sp., a filamentous green alga which co-occurs in moderately acidic lakes and has a similar pH tolerance range. This alga forms dense, floating mats or amorphous clouds in the upper littoral zone, where it would be exposed to full sunlight irradiances. In cultures ofC. breviturrita, prolonged exposures to 1600 μE · m−2 · s−1 (I0′) resulted in reductions in cell yield which were dependent age at the onset of exposure to high light intensity. Only cultures exposed to high light intensities during late stationary phase were able to recover to control levels and no recovery occurred if these cultures were nitrogen deficient.Mougeotia was more tolerant of both high light intensity and nitrogen limitation during the recovery period. The inability ofC. breviturrita to recover from the effects of high light intensity during nitrogen deprivation may be particularly important in small, stratified lakes which are undergoing acidification. The slow rate of vertical circulation, and increasing transparency, would prolong exposure of the alga to the high irradiance levels of nutrient-deficient epilimnetic waters. This suggests that the geographic distribution ofC. breviturrita may be explained in part by the increasing light intensities in lakes undergoing acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号