首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, polyethylene glycol (PEG) with different molecular weight, polyvinyl pyrrolidone (PVP), and polyvinyl alcohol (PVA), are chosen as porogens for preparing chitosan base porous microsphere supported palladium catalyst for coupling reactions. The pore structure of the microspheres was controlled by the compatibility of chitosan and counterpart polymers. The prepared porous chitosan microspheres supported palladium heterogeneous catalysts have been evaluated using the well-established Ullmann reductive homocoupling and the Heck cross-coupling reactions. The activities, stabilities and recyclability of the porous chitosan microspheres supported palladium catalysts are not only highly dependent upon the surface areas of the solid supports, but also upon the chemical properties of the water-soluble polymers. The degradation of the prepared heterogeneous palladium catalysts is mainly caused by a combination of the palladium leaching and the morphological transformation of the palladium species from the amorphous into the crystals.  相似文献   

2.
Liu L  Wang Y  Shen X  Fang Y 《Biopolymers》2005,78(4):163-170
The new biodegradable chitosan graft copolymer, chitosan-g-polycaprolactone, was synthesized by the ring-opening graft copolymerization of epsilon-caprolactone onto phthaloyl-protected chitosan (PHCS) at the hydroxyl group in the presence of tin(II) 2-ethylhexanoate catalyst via a protection-graft-deprotection procedure. Toluene acted as a swelling agent in this heterogeneous system. The grafting reactions were conducted with various PHCS/monomer/toluene feed ratios to obtain chitosan-g-polycaprolactone copolymers with various polycaprolactone contents. The chemical structure of the chitosan-g-polycaprolactone was characterized by Fourier transform infrared and one- and two-dimensional NMR spectroscopy. After deprotection, the phthaloyl group was removed and the amino group was regenerated. Thus the obtained chitosan-g-polycaprolactone was an amphoteric hybrid with a large amount of free amino groups and hydrophobic polycaprolactone side chains. Some properties of the final product were also investigated, such as crystallinity, thermal property, and solubility.  相似文献   

3.
This study presents a new approach for direct carboxyalkylation of chitosan in the gel state by using aza-Michael addition and substitution reactions. Various reagents were applied including acrylic and crotonic acids, and α-, β-, γ-, δ-, and ?-halocarboxylic acids. The reaction of chitosan with γ- and δ-halocarboxylic acids showed no target product formation either in solution or in the gel state. In the case of acrylic, crotonic, α- and β-halocarboxylic acids, the reaction performed in the gel state (concentration of chitosan 20-40%) shows higher degree of substitution at lower reaction time and temperature than in diluted solutions (concentration of chitosan 0.5-2%). The results were discussed in terms of kinetics of the target and side reactions. (1)H and (13)C NMR confirmed that in all cases the carboxyalkylation of chitosan proceeds exclusively at the amino groups.  相似文献   

4.
An enzymatic method to graft hexyloxyphenol onto the biopolymer chitosan was studied. The method employs tyrosinase to convert the phenol into a reactive o-quinone, which undergoes subsequent nonenzymatic reaction with chitosan. Reactions were conducted under heterogeneous conditions using chitosan films and also under homogeneous conditions using aqueous methanolic mixtures capable of dissolving both hexyloxyphenol and chitosan. Tyrosinase was shown to catalyze the oxidation of hexyloxyphenol in such aqueous methanolic solutions. Chemical evidence for covalent grafting onto chitosan was provided by three independent spectroscopic approaches. Specifically, enzymatic modification resulted in (1) the appearance of broad absorbance in the 350-nm region of the UV/vis spectra for chitosan films; (2) changes in the NH bending and stretching regions of chitosan's IR spectra; and (3) a base-soluble material with (1)H-NMR signals characteristic of both chitosan and the alkyl groups of hexyloxyphenol. Hexyloxyphenol modification resulted in dramatic changes in chitosan's functional properties. On the basis of contact angle measurements, heterogeneous modification of a chitosan film yielded a hydrophobic surface. Homogeneously modified chitosan offered rheological properties characteristic of associating water-soluble polymers.  相似文献   

5.
The influence of deacetylation degree on heterogeneous molecular aggregation has been investigated for chitosan solution in 2 wt % acetic acid aqueous solution using rheological and small-angle x-ray scattering (SAXS) methods. Three samples of chitosan, which were designated CS62, CS79, and CS96, were used, and the deacetylation degrees of these samples were 0.62, 0.79 and 0.96, respectively. Rheological properties show that the systems of CS62 and CS96 are homogeneous, and the system of CS79 has a certain heterogeneous structure with a long-time relaxation mechanism. According to the SAXS measurement, the heterogeneous system has a fractal structure and the fractal dimension is about 1.3.  相似文献   

6.
The high molecular weight of chitosan, which results in a poor solubility at neutral pH values and high viscosity aqueous solutions, limits its potential uses in the fields of food, health and agriculture. However, most of these limitations are overcome by chitosan oligosaccharides obtained by enzymatic hydrolysis of the polymer. Several commercial enzymes with different original specificities were assayed for their ability to hydrolyze a 93% deacetylation degree chitosan and compared with a chitosanase. According to the patterns of viscosity decrease and reducing end formation, three enzymes--cellulase, pepsin and lipase A--were found to be particularly suitable for hydrolyzing chitosan at a level comparable to that achieved by chitosanase. Unlike the appreciable levels of both 2-amino-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-glucose monomers released from chitosan by the other enzymes after a 20h-hydrolysis (4.6-9.1% of the total product weight), no monomer could be detected following pepsin cleavage. As a result, pepsin produced a higher yield of chitosan oligosaccharides than the other enzymes: 52% versus as much as 46%, respectively. Low molecular weight chitosans accounted for the remaining 48% of hydrolysis products. The calculated average polymerization degree of the products released by pepsin was around 16 units after 20h of hydrolysis. This product pattern and yield are proposed to be related to the bond cleavage specificity of pepsin and the high deacetylation degree of chitosan used as substrate. The optimal reaction conditions for hydrolysis of chitosan by pepsin were 40 degrees C and pH 4.5, and an enzyme/substrate ratio of 1:100 (w/w) for reactions longer than 1h.  相似文献   

7.
Poly(acrylonitrile)chitosan composite membranes for urease immobilization   总被引:1,自引:0,他引:1  
(Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.  相似文献   

8.
Advances on selective C-6 oxidation of chitosan by TEMPO   总被引:1,自引:0,他引:1  
The specific C-6 oxidation by TEMPO of chitosan and chitosan derivatives were studied to obtain tailored bioactive biopolymers. The modifications on chitosan presented many difficulties and showed the adverse effect of the amine moieties of chitosan on this reaction. Thus, protections of the amino groups by N-acetylation or N-phthaloylation were studied and followed by the C-6 specific oxidations of the resulting polymers. The desired 6-carboxychitosan could not be obtained after deprotection; the reactions with TEMPO led to degradation of the polymers. The specific oxidation of a potentially bioactive derivative of chitosan was then achieved by the oxidation of a quaternized chitosan: N, N, N-trimethylchitosan. N, N, N-Trimethyl-6-carboxychitosan was characterized by FTIR spectroscopy, 1H, and 13C NMR spectroscopy.  相似文献   

9.
Chen T  Embree HD  Wu LQ  Payne GF 《Biopolymers》2002,64(6):292-302
The enzyme tyrosinase was used for the in vitro conjugation of the protein gelatin to the polysaccharide chitosan. Tyrosinases are oxidative enzymes that convert accessible tyrosine residues of proteins into reactive o-quinone moieties. Spectrophotometric and dissolved oxygen studies indicate that tyrosinase can oxidize gelatin and we estimate that 1 in 5 gelatin chains undergo reaction. Oxidized tyrosyl residues (i.e., quinone residues) can undergo nonenzymatic reactions with available nucleophiles such as the nucleophilic amino groups of chitosan. Ultraviolet/visible, (1)H-NMR, and ir provided chemical evidence for the conjugation of oxidized gelatin with chitosan. Physical evidence for conjugation was provided by dynamic viscometry, which indicated that tyrosinase catalyzes the sol-to-gel conversion of gelatin/chitosan mixtures. The gels formed from tyrosinase-catalyzed reactions were observed to differ from gels formed by cooling gelatin. In contrast to gelatin gels, tyrosinase-generated gels had different thermal behavior and were broken by the chitosan-hydrolyzing enzyme chitosanase. These results demonstrate that tyrosinase can be exploited for the in vitro formation of protein-polysaccharide conjugates that offer interesting mechanical properties.  相似文献   

10.
Inhibition of enzymatic activity of lipase (EC 3.1.1.3) from the fungus Candida rugosa and wheat (Triticum aestivum L.) germ by low-molecular-weight chitosan with an average molecular weight of 5.7 kDa in reactions of p-nitrophenyl palmitate cleavage was studied. Preincubation of lipases with chitosan, prior to addition of the substrate to solution, showed that equilibrium during the lipase-inhibitor complex formation was reached within 30 min. The inhibition constants for C. rugosa lipase and wheat germ lipase were 1.4 and 0.9 mM, respectively. The contribution of electrostatic interactions to the complex formation between chitosan and lipases is insignificant.  相似文献   

11.
A water-soluble polymeric photosensitizer that contains naphthyl chromophores and absorbs light in the near UV region was obtained by modification of chitosan. The excitation energy can be used to induce photochemical reactions via energy and electron transfer.  相似文献   

12.
Alkaline chitosan solutions   总被引:1,自引:0,他引:1  
Rigid and transparent hydrogels were obtained upon pouring chitosan salt solutions into saturated ammonium hydrogen carbonate. Incubation at 20 degrees C for 5 days yielded chitosan carbamate ammonium salt, Chit-NHCO(2)(-)NH(4)(+) a chemical species that either by hydrolysis or by thermal treatment decomposed to restore chitosan in free amine form. Chitosans of different degrees of acetylation, molecular sizes and origins (squid and crustaceans) were used as hydrochloride, acetate, glycolate, citrate and lactate salts. Their hydrogels obtained in ammonium hydrogen carbonate yielded chitosan solutions at pH values as high as 9.6, from which microspheres of regenerated chitosans were obtained upon spray-drying. These materials had a modest degree of crystallinity depending on the partial acylation that took place at the sprayer temperature (168 degrees C). Citrate could cross-link chitosan and impart insolubility to the microspheres. Chloride on the contrary permitted to prepare microspheres of chitosan in free amine form. By the NH(4)HCO(3) treatment, the cationicity of chitosan could be reversibly masked in view of mixing chitosan with alginate in equimolar ratio without coacervation. The clear and poorly viscous solutions of mixed chitosan carbamate and alginate were spray-dried at 115 degrees C to manufacture chitosan-alginate microspheres having prevailing diameter approx 2 micron.  相似文献   

13.
Two novel scaffold models made of chitosan fibers were designed, fabricated, and investigated. Raw chitosan fibers were either tightened between plastic rings or were processed into stand-alone scaffolds. Chitosan fiber scaffolds were further modified by coating with a thin layer of fibrillar collagen type I to biologize the surface. Cell culture experiments were carried out using murine osteoblast-like cells (7F2). Confocal laser scanning microscopy (cLSM) as well as scanning electron microscopy (SEM) revealed fast attachment and morphological adaptation of the cells on both the raw chitosan fibers and the collagen-coated scaffolds. Cells were cultivated for up to 4 weeks on the materials and proliferation as well as osteogenic differentiation was quantitatively analyzed in terms of lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) activity. We found a 14-16-fold increase of cell number and the typical pattern of ALP activity, whereas the collagen coating does not remarkably influence these parameters. The maintenance of osteogenic phenotype on the novel materials was furthermore confirmed by immunostaining of osteocalcin and study of matrix mineralization. The feature of the collagen-coated but also the raw chitosan fiber scaffolds to support the attachment, proliferation, and differentiation of osteoblast-like cells suggest a potential application of chitosan fibers and textile chitosan scaffolds for the tissue engineering of bone.  相似文献   

14.
Various quaternary chitosan derivative structures were synthesized by reacting N-chloroacyl-6-O-triphenylmethylchitosans with tertiary amines. Full substitutions were obtained from the quaternization reactions and the obtained water-soluble quaternary chitosan derivatives were thoroughly characterized with (1)H NMR, (13)C NMR, (1)H-(13)C HSQC NMR, and FT-IR.  相似文献   

15.
In the present paper a new strategy has been studied to introduce solely or in combination N-sulfo, O-sulfo, N-acetyl, and N-carboxymethyl groups into chitosan with highest possible regioselectivity and completeness and defined distribution along the polymer chain. The aim was to generate compounds having lowest toxicity for determining the pharmacological structure function relationships among different backbone structures and differently arranged functional groups compared to those of heparin and heparan sulfate. The water-soluble starting material, chitosan, with a degree of acetylation (DA) of 0.14 and a molecular weight of 29 kD, allows one to apply most of the known reactions of chitosan as well as some reactions of heparin chemistry successfully and with improved regioselectivity and completeness. On the other hand, a number of these reactions were not successful by application to water-soluble high-molecular-weight chitosan (DA 0.45 and 150 kD). The starting material showed statistical N-acetyl (N-Ac) distribution along the polymer chain according to the rules of Bernoulli, with highest abundance of the GlcNAc-GlcNAc diad along with a lower abundance of triads, tetrads, and pentads. The space between the N-Ac groups was filled up in homogeneous reactions by N-sulfo and/or N-carboxymethyl groups, which also resulted in a Bernoulli statistical distribution. The N-substitution reaction showed highest regioselectivity and completeness with up to three combined different functional groups. The regioselectivity of the 3-O-sulfo groups was improved by regioselective 6-desulfation of nearly completely sulfated 3,6-di-O-sulfochitosan. By means of desulfation reactions, all of the possible intermediate sulfated products are possible. 6-O-Sulfo groups can also be introduced with highest regioselectivity and completeness, and a number of partially 6-desulfated products are possible.  相似文献   

16.
Guo Z  Xing R  Liu S  Zhong Z  Ji X  Wang L  Li P 《Carbohydrate research》2007,342(10):1329-1332
Schiff bases of chitosan, N-substituted chitosan, and quaternized chitosan were synthesized and their antifungal properties were analyzed against Botrytis cinerea Pers. (B. cinerea pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) Ell.et halst) based on the method of D. Jasso de Rodríguez and co-workers. The results showed that quaternized chitosan had better inhibitory properties than chitosan, Schiff bases of chitosan, and N-substituted chitosan.  相似文献   

17.
Chitosan particles were functionalized with ferulic acid (FA) and ethyl ferulate (EF) as substrates using laccase from Myceliophtora thermophyla as biocatalyst. The reactions were performed with chitosan particles under an eco-friendly procedure, in a heterogeneous system at 30 °C, in phosphate buffer (50 mM, pH 7.5).The FA-chitosan derivative presented an intense yellow-orange color stable while the EF-chitosan derivative was colorless. The spectroscopic analyses indicated that the reaction products bound covalently to the free amino groups of chitosan exhibiting a novel absorbance band in the UV/Vis spectra between 300 and 350 nm, at C-2 region by the duplication of C-2 signal in the 13C NMR spectrum, via Schiff base bond (NC) exhibiting novel bands in the FT-IR spectrum at 1640 and 1620 cm−1. Additionally, antioxidant capacities of chitosan derivatives showed that the chitosan derivatives presented improved antioxidant properties, especially for FA-chitosan derivative (EC50 were 0.52 ± 0.04, 0.20 ± 0.02 mg/ml for DPPH and ABTS+ scavenging, respectively).  相似文献   

18.
Inhibition of enzymatic activity of lipase (EC 3.1.1.3) from the fungus Candida rugosa and wheat (Triticum aestivum L.) germ by low-molecular-weight chitosan with an average molecular weight of 5.7 kDa in reactions of p-nitrophenyl palmitate cleavage was studied. Preincubation of lipases with chitosan, prior to addition of the substrate to solution, showed that equilibrium during the lipase-inhibitor complex formation was reached within 30 min. The inhibition constants for C. rugosa lipase and wheat germ lipase were 1.4 and 0.9 mM, respectively. The contribution of electrostatic interactions to the complex formation between chitosan and lipases is insignificant.  相似文献   

19.
Inhibition of enzymatic activity of lipase (EC 3.1.1.3) from the fungus Candida rugosa and wheat (Triticum aestivum L.) germ by low-molecular-weight chitosan with an average molecular weight of 5.7 kDa in reactions of p-nitrophenyl palmitate cleavage was studied. Preincubation of lipases with chitosan, prior to addition of the substrate to solution, showed that equilibrium during the lipase-inhibitor complex formation was reached within 30 min. The inhibition constants for C. rugosa lipase and wheat germ lipase were 1.4 and 0.9 mM, respectively. The contribution of electrostatic interactions to the complex formation between chitosan and lipases is insignificant.  相似文献   

20.
Chitosan is a linear polysaccharide that has many biomedical applications. We compared the effects of chitosan, in both solution and membranous form, on intercellular adhesion of Swiss 3T3 mouse fibroblasts. Cells were grown as spheroidal cell cultures. Some control cell spheroids were cultured without chitosan and two experimental groups were cultured with chitosan. Chitosan in solution was used for one experimental group and chitosan in membranous form was used for the other. For each group, intercellular adhesion was investigated on days 5 and 10 of culture. Transmission electron microscopy revealed well-defined cellular projections that were more prominent in cells exposed to either membranous or solution forms of chitosan than to the chitosan-free control. Immunocytochemical staining of ICAM-1 and e-cadherin was used to determine the development of intercellular junctions. Compared to the weakly stained control, strong reactions were observed in both chitosan exposed groups at both 5 and 10 days. Cells were treated with 5-bromo-2-deoxyuridine (BrdU) and incubated with anti-BrdU primary antibody to assess proliferation. Both the solution and membranous forms of chitosan increased proliferation at both 5 and 10 days. Cellular viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The MTT assay indicated high cell viability; maximum viability was obtained with the solution form of chitosan at day 5. Chitosan exposure increased the number of intercellular junctions and showed a significant proliferative effect on 3T3 mouse fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号