共查询到20条相似文献,搜索用时 15 毫秒
1.
H Weber 《Biochimica et biophysica acta》1976,418(2):175-183
The site of interaction of phage Qbeta coat protein with Qbeta RNA was determined by ribonuclease T1 degradation of complexes of coat protein and [32P]-RNA obtained by codialysis of the components from urea into buffer solutions. The degraded complexes were recovered by filtration through nitrocellulose filters, and bound [32P]RNA fragments were extracted and separated by polyacrylamide gel electrophoresis. Fingerprinting and further sequence analysis established that the three main fragments obtained (chain lengths 88, 71 and 27 nucleotides) all consist of sequences extending from the intercistronic region to the beginning of the replicase cistron. These results suggest that in the replication of Qbeta, as in the case of R17, coat protein acts as a translational repressor by binding to the ribosomal initiation site of the replicase cistron. 相似文献
2.
Hexamer of bacteriophage f2 coat protein as a repressor of bacteriophage RNA polymerase synthesis. 下载免费PDF全文
Formation of complex I between phage f2 RNA and coat protein, leading to repression of phage RNA polymerase synthesis, depends nonlinearly upon the concentration of the coat protein. Maximum formation of complex I was observed when six molecules of coat protein were bound to one molecule of RNA. RNase digestion of a glutaraldehyde-fixed complex left, as the products, coat protein oligomers. The heaviest, hexamers, predominated in the mixture. It was also shown that, in an ionic environment required for phage protein synthesis, coat protein at a concentration optimum for complex I formation exists in solution as a dimer. The results indicate that the translational repression of the RNA polymerase cistron is due to a cooperative attachment to phage template of three dimers of coat protein, forming a hexameric cluster on an RNA strand. 相似文献
3.
The coat proteins of the RNA phages MS2 and Qbetaare structurally homologous, yet they specifically bind different RNA structures. In an effort to identify the basis of RNA binding specificity we sought to isolate mutants that convert MS2 coat protein to the RNA binding specificity of Qbeta. A library of mutations was created which selectively substitutes amino acids within the RNA binding site. Genetic selection for the ability to repress translation from the Qbetatranslational operator led to the isolation of several MS2 mutants that acquired binding activity for QbetaRNA. Some of these also had reduced abilities to repress translation from the MS2 translational operator. These changes in RNA binding specificity were the results of substitutions of amino acid residues 87 and 89. Additional codon- directed mutagenesis experiments confirmed earlier results showing that the identity of Asn87 is important for specific binding of MS2 RNA. Glu89, on the other hand, is not required for recognition of MS2 RNA, but prevents binding of QbetaRNA. 相似文献
4.
A Hirashima H Harigai I Watanabe 《Biochemical and biophysical research communications》1979,88(3):1046-1051
This report describes the enhancing effect of magnesium ion on the synthesis of read-through protein of bacteriophage Qβ in a cell-free protein synthesizing system from . At 6 mM of magnesium acetate, the major product was coat protein. At 12 mM of magnesium, it was replaced by read-through protein. This enhanced synthesis was substituted by the addition of 0.25 mM of spermine or 1 mM of spermidine to 6 mM of magnesium. These results suggest that magnesium or combination of magnesium and polyamines causes leaky termination at the end of the coat protein cistron of Qβ-RNA. 相似文献
5.
A method is described to classify, in regard to their location within the genome, fragments obtained by partial cleavage of 32P-labeled bacteriophage Qbeta RNA. The location of many fragments suitable for sequence analysis could be established using as markers 29 large RNase T1-resistant oligonucleotides with known map positions. Applying this method four fragments originating from the coat protein cistron were isolated and analyzed. The sequence of a segment of 239 nucleotides located immediately adjacent to the initiation triplet was determined to be G-C-A-A-A-A-U-U-A-G-A-G-A-C-U-G-U-U-A-C-U-U-U-A-G-G-U-A-A-C-A-U-C-G-G-G-A-A-A-G-A-U-G-G-A-A-A-A-C-A-A-A-C-U-C-U-G-G-U-C-C-U-C-A-A-U-C-C-G-C-G-U-G-G-G-G-U-A-A-A-U-C-C-C-A-C-U-A-A-C-G-G-C-G-U-U-G-C-C-U-C-G-C-U-U-U-C-A-C-A-A-G-C-G-G-G-U-G-C-A-G-U-U-C-C-U-G-C-G-C-U-G-G-A-G-A-A-G-C-G-U-G-U-U-A-C-C-G-U-U-U-C-G-G-U-A-U-C-U-C-A-G-C-C-U-U-C-U-C-G-C-A-A-U-C-G-U-A-A-G-A-A-C-U-A-C-A-A-G-G-U-C-C-A-G-G-U-U-A-A-G-A-U-C-C-A-G-A-A-C-C-C-G-A-C-C-G-C-U-U-G-C-A-C-U-G-C-A-A-A-C-G-G-U-U-C-U-U-Gp. The primary structure and the secondary structure model derived from it did not provide any evidence of homology with the corresponding RNA region of bacteriophage MS2. 相似文献
6.
Gene 9 protein is one of the minor coat proteins of bacteriophage M13. The protein plays a role in the assembly process by associating with the host membrane by protein-lipid interactions. The availability of chemically synthesized protein has enabled the biophysical characterization of the membrane-bound state of the protein by using model membrane systems. This paper summarizes, discusses and further interprets this work in the light of the current state of the literature, leading to new possible models of the coat protein in a membrane. The biological implications of these findings related to the membrane-bound phage assembly are indicated. 相似文献
7.
As a component of bacteriophage Qbeta replicase, S1 is required both for initiation of Qbeta minus strand RNA synthesis and for translational repression, which has been traced to the ability of the enzyme to bind to an internal site in the Qbeta RNA molecule. Previously, Senear and Steitz (Senear, A. W., and Steitz, J. A. (1976) J. Biol. Chem. 251, 1902-1912) found that isolated S1 protein binds specifically to an oligonucleotide spanning residues -38 to -63 from the 3' terminus of Qbeta RNA. Here we report that S1 also interacts strongly with a second oligonucleotide in Qbeta RNA, which is derived from the region recognized by replicase just 5' to the Qbeta coat protein cistron. Both sequences exhibit pyrimidine-rich regions. 相似文献
8.
Control of protein synthesis in Escherichia coli: control of bacteriophage Q beta coat protein synthesis after energy source shift-down. 下载免费PDF全文
Escherichia coli Q13 was infected with bacteriophage Q beta and subjected to energy source shift-down (from glucose-minimal to succinate-minimal medium) 20 min after infection. Production of progeny phage was about fourfold slower in down-shifted cultures than in the cultures in glucose medium. Shift-down did not affect the rate of phage RNA replication, as measured by the rate of incorporation of [14C]uracil in the presence of rifampin, with appropriate correction for the reduced entry of exogenous uracil into the UTP pool. Phage coat protein synthesis was three- to sixfold slower in down-shifted cells than in exponentially growing cells, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The polypeptide chain propagation rate in infected cells was unaffected by the down-shift. Thus, the reduced production of progeny phage in down-shifted cells appears to result from control of phage protein synthesis at the level of initiation of translation. The reduction in the rate of Q beta coat protein synthesis is comparable to the previously described reduction in the rate of synthesis of total E. coli protein and of beta-galactosidase, implying that the mechanism which inhibits translation in down-shifted cells is neither messenger specific nor specific for 5' proximal cistrons. The intracellular ATP pool size was nearly constant after shift-down; general energy depletion is thus not a predominant factor. The GTP pool, by contrast, declined by about 40%. Also, ppGpp did not accumulate in down-shifted, infected cells in the presence of rifampin, indicating that ppGpp is not the primary effector of this translational inhibition. 相似文献
9.
Enzymatic synthesis of a 21-nucleotide coat protein binding fragment of R17 ribonucleic acid 总被引:8,自引:0,他引:8
An oligoribonucleotide with a sequence identical with the bacteriophage R17 replicase initiator region has been synthesized. The sequence also encompasses the binding domain of R17 coat protein, which is known to act as a translational repressor at this site. The 21-nucleotide fragment was synthesized entirely by enzymatic methods, T4 RNA ligase being used to join shorter oligomers. The resulting fragment has a secondary structure with the expected thermal stability. Since the synthetic fragment binds R17 coat protein with the same affinity as a 59-nucleotide fragment isolated from R17 RNA, we conclude that it has full biological activity. 相似文献
10.
11.
M Kondo 《Archives internationales de physiologie et de biochimie》1975,83(5):909-948
(1) The RNA replicase induced by bacteriophage Qbeta consists of four non-identical subunits designated as alpha (mol. wt. 74000), beta (mol. wt. 64000), gamma (mol. wt. 47000) and delta (mol. wt. 33000), only one (subunit beta) of which is specified by the phage genome. (2) Subunit alpha (30 S ribosomal protein "S1" as well as translational interference factor "i") is required only for (+) strand-directed RNA synthesis in the presence of the host factor. (3) Qbeta replicase lacking subunit alpha (R-alpha) is capable of replicating templates other than (+) strand, such as (--), "6S" RNA, poly(C) etc., in the absence of the host factor. (4) Subunit beta is suggested to be the nucleotide-polymerizing enzyme, but is unable to initiate RNA synthesis by itself. (5) Subunits gamma and delta are identical to the protein synthesis elongation factors, EF-Tu and EF-Ts, respectively, and are required only for initiation of RNA synthesis, but not for elongation. (6) A model of Qbeta replicase is presented in order to discuss observed template-enzyme interactions. 相似文献
12.
13.
D S Peabody 《The EMBO journal》1993,12(2):595-600
The coat protein of the RNA bacteriophage MS2 binds a specific stem-loop structure in viral RNA to accomplish encapsidation of the genome and translational repression of replicase synthesis. In order to identify the structural components of coat protein required for its RNA binding function, a series of repressor-defective mutants has been isolated. To ensure that the repressor defects were due to substitution of binding site residues, the mutant coat proteins were screened for retention of the ability to form virus-like particles. Since virus assembly presumably requires native structure, this approach eliminated mutants whose repressor defects were secondary consequences of protein folding or stability defects. Each of the variant coat proteins was purified and its ability to bind operator RNA in vitro was measured. DNA sequence analysis identified the nucleotide and amino acid substitutions responsible for reduced RNA binding affinity. Localization of the substituted sites in the three-dimensional structure of coat protein reveals that amino acid residues on three adjacent strands of the coat protein beta-sheet are required for translational repression and RNA binding. The sidechains of the affected residues form a contiguous patch on the interior surface of the viral coat. 相似文献
14.
The RNA bacteriophages of E. coli specifically encapsidate a single copy of the viral genome in a protein shell composed mainly of 180 molecules of coat protein. Coat protein is also a translational repressor and shuts off viral replicase synthesis by interaction with a RNA stem-loop containing the replicase initiation codon. We wondered whether the translational operator also serves as the viral pac site, the signal which mediates the exclusive encapsidation of viral RNA by its interaction with coat protein. To test this idea we measured the ability of lacZ RNA fused to the translational operator to be incorporated into virus-like particles formed from coat protein expressed from a plasmid. The results indicate that the operator-lacZ RNA is indeed encapsidated and that nucleotide substitutions in the translational operator which reduce the tightness of the coat protein-operator interaction also reduce or abolish encapsidation of the hybrid RNA. When coat protein is expressed in excess compared to the operator-lacZ RNA, host RNAs are packaged as well. However, elevation of the level of operator-lacZ RNA relative to coat protein results in its selective encapsidation at the expense of cellular RNAs. Our results are consistent with the proposition that this single protein-RNA interaction accounts both for translational repression and viral genome encapsidation. 相似文献
15.
The coat protein of bacteriophage GA, a group II RNA phage, binds to a small RNA hairpin corresponding to its replicase operator. Binding is specific, with a Ka of 71 microM -1. This interaction differs kinetically from the analogous coat protein-RNA hairpin interactions of other RNA phage and also deviates somewhat in its pH and salt dependence. Despite 46 of 129 amino acid differences between the GA and group I phage R17 coat proteins, the binding sites are fairly similar. The essential features of the GA coat protein binding site are a based-paired stem with an unpaired purine and a four nucleotide loop having an A at position -4 and a purine at -7. Unlike the group I phage proteins, the GA coat protein does not distinguish between two alternate positions for the unpaired purine and does not show high specificity for a pyrimidine at position -5 of the loop. 相似文献
16.
Dynamics of fd coat protein in the bacteriophage 总被引:1,自引:0,他引:1
The dynamics of the coat protein in fd bacteriophage are described with solid-state 15N and 2H NMR experiments. The virus particles and the coat protein subunits are immobile on the time scales of the 15N chemical shift anisotropy (10(3) Hz) and 2H quadrupole (10(6) Hz) interactions. Previously we have shown that the Trp-26 side chain is immobile, that the two Tyr and three Phe side chains undergo only rapid twofold jump motions about their C beta-C gamma bond axis [Gall, C. M., Cross, T. A., DiVerdi, J. A., & Opella, S. J. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 101-105], and that most of the backbone peptide linkages are highly constrained but do undergo rapid small amplitude motions [Cross, T. A., & Opella, S. J. (1982) J. Mol. Biol. 159, 543-549] in the coat protein subunits in the virus particles. In this paper, we demonstrate that the four N-terminal residues of the coat protein subunits are highly mobile, since both backbone and side-chain sites of these residues undergo large amplitude motions that are rapid on the time scales of the solid-state NMR experiments. In addition, the dynamics of the methyl-containing aliphatic residues Ala, Leu, Val, Thr, and Met are analyzed. Large amplitude jump motions are observed in nearly all of these side chains even though, with the exception of the N-terminal residue Ala-1, their backbone peptide linkages are highly constrained. The established information about the dynamics of the structural form of fd coat protein in the virus particle is summarized qualitatively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
We have recently shown that Escherichia coli cells deficient in Hfq protein (i.e. the Qbeta "host factor") support bacteriophage Qbeta replication inefficiently, but that the phage evolves rapidly in the mutant host to become essentially host factor independent. An identical set of four point mutations was identified as being responsible for the adapted phenotype in each of three independent adaptation experiments. Here we report the effects of the single mutations and of some of their combinations on host factor dependence of phage multiplication in vivo and of phage RNA replication by Qbeta replicase in vitro. We find that each single substitution produces only small effects, but that in combination the four mutations synergistically account for most of the observed adaptation of the evolved phages. Surprisingly, a reanalysis of the 3'-terminal sequence of the adapted phages resulted in the discovery of a fifth mutation in all three independently evolved phage populations, namely, a C to U residue transition at nucleotide 4214. This mutation had been missed previously because of its location only three nucleotides from the 3'-end. It appears to contribute little to the Hfq independence but may enhance RNA stability by re-establishing the possibility of forming a long-range base-pairing interaction involving the immediate 3'-terminal sequence. 相似文献
18.
19.
Secondary structure and coding potential of the coat protein gene of bacteriophage MS2 总被引:3,自引:0,他引:3
L A Ball 《Nature: New biology》1973,242(115):44-45
20.