首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitosis requires the concerted activities of multiple microtubule (MT)-based motor proteins. Here we examined the contribution of the chromokinesin, KLP3A, to mitotic spindle morphogenesis and chromosome movements in Drosophila embryos and cultured S2 cells. By immunofluorescence, KLP3A associates with nonfibrous punctae that concentrate in nuclei and display MT-dependent associations with spindles. These punctae concentrate in indistinct domains associated with chromosomes and central spindles and form distinct bands associated with telophase midbodies. The functional disruption of KLP3A by antibodies or dominant negative proteins in embryos, or by RNA interference (RNAi) in S2 cells, does not block mitosis but produces defects in mitotic spindles. Time-lapse confocal observations of mitosis in living embryos reveal that KLP3A inhibition disrupts the organization of interpolar (ip) MTs and produces short spindles. Kinetic analysis suggests that KLP3A contributes to spindle pole separation during the prometaphase-to-metaphase transition (when it antagonizes Ncd) and anaphase B, to normal rates of chromatid motility during anaphase A, and to the proper spacing of daughter nuclei during telophase. We propose that KLP3A acts on MTs associated with chromosome arms and the central spindle to organize ipMT bundles, to drive spindle pole separation and to facilitate chromatid motility.  相似文献   

2.
It is well established that multiple microtubule-based motors contribute to the formation and function of the mitotic spindle, but how the activities of these motors interrelate remains unclear. Here we visualize spindle formation in living Drosophila embryos to show that spindle pole movements are directed by a temporally coordinated balance of forces generated by three mitotic motors, cytoplasmic dynein, KLP61F, and Ncd. Specifically, our findings suggest that dynein acts to move the poles apart throughout mitosis and that this activity is augmented by KLP61F after the fenestration of the nuclear envelope, a process analogous to nuclear envelope breakdown, which occurs at the onset of prometaphase. Conversely, we find that Ncd generates forces that pull the poles together between interphase and metaphase, antagonizing the activity of both dynein and KLP61F and serving as a brake for spindle assembly. During anaphase, however, Ncd appears to have no effect on spindle pole movements, suggesting that its activity is down-regulated at this time, allowing dynein and KLP61F to drive spindle elongation during anaphase B.  相似文献   

3.
Chromosome movements are linked to the active depolymerization of spindle microtubule (MT) ends. Here we identify the kinesin-13 family member, KLP59D, as a novel and uniquely important regulator of spindle MT dynamics and chromosome motility in Drosophila somatic cells. During prometaphase and metaphase, depletion of KLP59D, which targets to centrosomes and outer kinetochores, suppresses the depolymerization of spindle pole–associated MT minus ends, thereby inhibiting poleward tubulin Flux. Subsequently, during anaphase, loss of KLP59D strongly attenuates chromatid-to-pole motion by suppressing the depolymerization of both minus and plus ends of kinetochore-associated MTs. The mechanism of KLP59D''s impact on spindle MT plus and minus ends appears to differ. Our data support a model in which KLP59D directly depolymerizes kinetochore-associated plus ends during anaphase, but influences minus ends indirectly by localizing the pole-associated MT depolymerase KLP10A. Finally, electron microscopy indicates that, unlike the other Drosophila kinesin-13s, KLP59D is largely incapable of oligomerizing into MT-associated rings in vitro, suggesting that such structures are not a requisite feature of kinetochore-based MT disassembly and chromosome movements.  相似文献   

4.
The KLP61F gene product is essential for Drosophila development. Mutations in KLP61F display a mitotic arrest phenotype caused by a failure in the proper separation of duplicated centrosomes (Heck et al., 1993). Sequence analysis of KLP61F identified it as a member of the bimC family of kinesin-like microtubule motor proteins. Here we report that KLP61F is distinct from KRP130, a kinesin-like protein recently purified from Drosophila embryos and suggested to be the product of the KLP61F gene (Cole et al., 1994). We also characterized recombinant KLP61F and found that it possesses microtubule-stimulated ATPase and microtubule translocation activities in vitro. In addition, we have used an affinity-purified, KLP61F-specific antiserum to localize native KLP61F and an epitope-tagged KLP61F fusion protein during various stages of mitosis in Drosophila syncytial blastoderm embryos. From early prophase through anaphase, KLP61F is coincident with the distribution of tubulin. Together these results confirm the existence of multiple bimC-like kinesins in Drosophila and suggest that KLP61F function is intrinsic to the mitotic spindle.  相似文献   

5.
Anaphase A chromatid-to-pole motion is fundamental for proper chromosome segregation in most systems. During the past several decades, two models for the mechanism of anaphase A have come to prominence. The Pacman model posits that chromatids induce the depolymerization of microtubule plus-ends embedded in kinetochores, thereby ‘chewing’ their way poleward. Alternatively, the Poleward-flux model posits that chromatids are ‘reeled-in’ to poles by the continual depolymerization of the minus-ends of kinetochore-associated microtubules, which are focused at spindle poles. In a recent study, we reported that anaphase A in Drosophila requires the depolymerization of both ends of kinetochore-associated microtubules, simultaneously. This is driven by two members of the Kin I subfamily of kinesins, termed KLP59C and KLP10A, which target specifically to chromatids and spindle poles, respectively. We have termed this hybrid of Pacman and Poleward flux the Kin I-dependent Pacman-flux mechanism for anaphase A. Here, we discuss the implications of these findings and explore potential additional components required to drive chromatid-to-pole motion by such a mechanism.  相似文献   

6.
We have identified Klp2p, a new kinesin-like protein (KLP) of the KAR3 subfamily in fission yeast. The motor domain of this protein is 61% identical and 71% similar to Pkl1p, another fission yeast KAR3 protein, yet the two enzymes are different in behavior and function. Pkl1p is nuclear throughout the cell cycle, whereas Klp2p is cytoplasmic during interphase. During mitosis Klp2p enters the nucleus where it forms about six chromatin-associated dots. In metaphase-arrested cells these migrate back and forth across the nucleus. During early anaphase they segregate with the chromosomes into two sets of about three, fade, and are replaced by other dots that form on the spindle interzone. Neither klp2(+) nor pkl1(+) is essential, and the double deletion is also wild type for both vegetative and sexual reproduction. Each deletion rescues different alleles of cut7(ts), a KLP that contributes to spindle formation and elongation. When either or both deletions are combined with a dynein deletion, vegetative growth is normal, but sexual reproduction fails: klp2 Delta,dhc1-d1 in karyogamy, pkl1 Delta,dhc1-d1 in multiple phases of meiosis, and the triple deletion in both. Deletion of Klp2p elongates a metaphase-arrested spindle, but pkl1 Delta shortens it. The anaphase spindle of klp2 Delta becomes longer than the cell, leading it to curl around the cell's ends. Apparently, Klp2p promotes spindle disassembly and contributes to the behavior of mitotic chromosomes.  相似文献   

7.
Dynein is a critical mitotic motor whose inhibition causes defects in spindle pole organization and separation, chromosome congression or segregation, and anaphase spindle elongation, but results differ in different systems. We evaluated the functions of the dynein-dynactin complex by using RNA interference (RNAi)-mediated depletion of distinct subunits in Drosophila S2 cells. We observed a striking detachment of centrosomes from spindles, an increase in spindle length, and a loss of spindle pole focus. RNAi depletion of Ncd, another minus-end motor, produced disorganized spindles consisting of multiple disconnected mini-spindles, a different phenotype consistent with distinct pathways of spindle pole organization. Two candidate dynein-dependent spindle pole organizers also were investigated. RNAi depletion of the abnormal spindle protein, Asp, which localizes to focused poles of control spindles, produced a severe loss of spindle pole focus, whereas depletion of the pole-associated microtubule depolymerase KLP10A increased spindle microtubule density. Depletion of either protein produced long spindles. After RNAi depletion of dynein-dynactin, we observed subtle but significant mislocalization of KLP10A and Asp, suggesting that dynein-dynactin, Asp, and KLP10A have complex interdependent functions in spindle pole focusing and centrosome attachment. These results extend recent findings from Xenopus extracts to Drosophila cultured cells and suggest that common pathways contribute to spindle pole organization and length determination.  相似文献   

8.
The kinesin superfamily is a large group of proteins (kinesin-like proteins [KLPs]) that share sequence similarity with the microtubule (MT) motor kinesin. Several members of this superfamily have been implicated in various stages of mitosis and meiosis. Here we report our studies on KLP67A of Drosophila. DNA sequence analysis of KLP67A predicts an MT motor protein with an amino-terminal motor domain. To prove this directly, KLP67A expressed in Escherichia coli was shown in an in vitro motility assay to move MTs in the plus direction. We also report expression analyses at both the mRNA and protein level, which implicate KLP67A in the localization of mitochondria in undifferentiated cell types. In situ hybridization studies of the KLP67A mRNA during embryogenesis and larval central nervous system development indicate a proliferation-specific expression pattern. Furthermore, when affinity-purified anti-KLP67A antisera are used to stain blastoderm embryos, mitochondria in the region of the spindle asters are labeled. These data suggest that KLP67A is a mitotic motor of Drosophila that may have the unique role of positioning mitochondria near the spindle.  相似文献   

9.
We have performed a mutational analysis together with RNA interference to determine the role of the kinesin-like protein KLP67A in Drosophila cell division. During both mitosis and male meiosis, Klp67A mutations cause an increase in MT length and disrupt discrete aspects of spindle assembly, as well as cytokinesis. Mutant cells exhibit greatly enlarged metaphase spindle as a result of excessive MT polymerization. The analysis of both living and fixed cells also shows perturbations in centrosome separation, chromosome segregation, and central spindle assembly. These data demonstrate that the MT plus end-directed motor KLP67A is essential for spindle assembly during mitosis and male meiosis and suggest that the regulation of MT plus-end polymerization is a key determinant of spindle architecture throughout cell division.  相似文献   

10.
The central spindle forms between segregating chromosomes during anaphase and is required for cytokinesis. Although anaphase-specific bundling and stabilization of interpolar microtubules (MTs) contribute to formation of the central spindle, it remains largely unknown how these MTs are prepared. Using live imaging of MT plus ends and an MT depolymerization and regrowth assay, we show that de novo MT generation in the interchromosomal region during anaphase is important for central spindle formation in human cells. Generation of interchromosomal MTs and subsequent formation of the central spindle occur independently of preanaphase MTs or centrosomal MT nucleation but require augmin, a protein complex implicated in nucleation of noncentrosomal MTs during preanaphase. MTs generated in a hepatoma up-regulated protein (HURP)-dependent manner during anaphase also contribute to central spindle formation redundantly with preanaphase MTs. Based on these results, a new model for central spindle assembly is proposed.  相似文献   

11.
KLP61F in Drosophila is a member of the BimC family of kinesins and, as for other family members [1], is required for spindle assembly [2] [3]. KLP61F is a bipolar homotetramer that cross-links spindle microtubules [4]. It is not known, however, whether the function of KLP61F is dedicated to mitosis or whether KLP61F interacts exclusively with microtubules. Previous work suggested that KLP61F functions during interphase in proliferating germ cells [3]. Cytokinesis is incomplete in germ cells and a branched cortical structure known as a fusome extrudes through intercellular bridges called ring canals. Here I show that, in germ cells, KLP61F cycles between spindles during mitosis and fusomes during interphase. Inspection of fusome-deficient hu-li tai shao (hts) mutants indicated that KLP61F gains fusome-dependent interactions near telophase that mediate its incorporation into these structures. KLP61F proved to be maintained in fusomes by microtubule-independent, detergent-resistant interactions. Inspection of KLP61F mutants indicated that KLP61F is required to recruit fusome material to spindle midbodies near telophase and for normal fusome organization. These observations suggest that KLP61F is bifunctional in germ cells, with microtubule-dependent functions in spindle assembly and microtubule-independent functions in fusome organization. Cytological analyses with antibodies against phosphorylated Eg5 peptide [4] suggest that cycling of KLP61F might reflect phosphorylation.  相似文献   

12.
The poleward flux of tubulin subunits through spindle microtubules is a striking and conserved phenomenon whose function and molecular components remain poorly understood. To screen for novel components of the flux machinery, we utilized RNA interference to deplete regulators of microtubule dynamics, individually and in various combinations, from S2 cells and examined the resulting impact on flux rate. This led to the identification of two previously unknown flux inhibitors, KLP59C and KLP67A, and a flux promoter, Mini-spindles. Furthermore, we find that flux rate is regulated by functional antagonism among microtubule stabilizers and destabilizers specifically at plus ends. Finally, by examining mitosis on spindles in which flux has been up- or down-regulated or restored after the codepletion of antagonistic flux regulators, we show that flux is an integral contributor to anaphase A but is not responsible for chromosome congression, interkinetochore tension, or the establishment of normal spindle length during prometaphase/metaphase.  相似文献   

13.
The positioning of centrosomes, or microtubule-organizing centres, within cells plays a critical part in animal development. Here we show that, in Drosophila embryos undergoing mitosis, the positioning of centrosomes within bipolar spindles and between daughter nuclei is determined by a balance of opposing forces generated by a bipolar kinesin motor, KLP61F, that is directed to microtubule plus ends, and a carboxy-terminal kinesin motor, Ncd, that is directed towards microtubule minus ends. This activity maintains the spacing between separated centrosomes during prometaphase and metaphase, and repositions centrosomes and daughter nuclei during late anaphase and telophase. Surprisingly, we do not observe a function for KLP61F in the initial separation of centrosomes during prophase. Our data indicate that KLP61F and Ncd may function by crosslinking and sliding antiparallel spindle microtubules in relation to one another, allowing KLP61F to push centrosomes apart and Ncd to pull them together.  相似文献   

14.
The kinesin-13 motor, KLP10A, destabilizes microtubules at their minus ends in mitosis and binds to polymerizing plus ends in interphase, regulating spindle and microtubule dynamics. Little is known about kinesin-13 motors in meiosis. In this study, we report that KLP10A localizes to the unusual pole bodies of anastral Drosophila melanogaster oocyte meiosis I spindles as well as spindle fibers, centromeres, and cortical microtubules. We frequently observe the pole bodies attached to cortical microtubules, indicating that KLP10A could mediate spindle anchoring to the cortex via cortical microtubules. Oocytes treated with drugs that suppress microtubule dynamics exhibit spindles that are reoriented more vertically to the cortex than untreated controls. A dominant-negative klp10A mutant shows both reoriented and shorter oocyte spindles, implying that, unexpectedly, KLP10A may stabilize rather than destabilize microtubules, regulating spindle length and positioning the oocyte spindle. By altering microtubule dynamics, KLP10A could promote spindle reorientation upon oocyte activation.  相似文献   

15.
Cell division is regulated by protein kinases of the Cdk, Polo, and Aurora families. Although it has long been established that temporal control is central to the coordinated action of these kinases, the importance of spatial regulation has only recently been appreciated and is still poorly understood. The kinesin-6 family motor protein MKlp1 is a key regulator of cytokinesis and an ideal substrate for studying spatially regulated protein-phosphorylation events. MKlp1 is negatively regulated by Cdk1 phosphorylation during metaphase and becomes activated in anaphase when cleavage-furrow assembly commences. Aurora B phosphorylates MKlp1 during anaphase and is required for its function in cytokinesis. Another kinesin-6 family motor, MKlp2, mediates the relocation of Aurora B from the centromeres to the central spindle at the onset of anaphase. We now demonstrate that this process is required for the phosphorylation of MKlp1 at S911, an Aurora B consensus site overlapping a bipartite nuclear localization sequence (NLS). MKlp1(S911A) targets to the central spindle but is prematurely imported into the nucleus and fails to support cytokinesis. Spatial restriction of Aurora B to the central spindle by MKlp2 therefore regulates MKlp1 during cytokinesis in human cells.  相似文献   

16.
KLP38B: A Mitotic Kinesin-related Protein That Binds PP1   总被引:2,自引:0,他引:2       下载免费PDF全文
We have identified a new member of the kinesin superfamily in Drosophila, KLP38B (kinesin-like protein at 38B). KLP38B was isolated through its two-hybrid interaction with the catalytic subunit of type 1 serine/threonine phosphoprotein phosphatase (PP1). We demonstrate that recombinant KLP38B and PP1 associate in vitro. This is the first demonstration of direct binding of a kinesin-related protein to a regulatory enzyme.

Though most closely related to the Unc-104 subfamily of kinesin-related proteins, KLP38B is expressed only in proliferating cells. KLP38B mutants show cell proliferation defects in many tissues. KLP38B is required for normal chromatin condensation as embryos from KLP38B mutant mothers have undercondensed chromatin at metaphase and anaphase. This is the first time that a kinesin-related protein has been shown to have such a role. Incomplete lethality of a strong KLP38B allele suggests partial redundancy with one or more additional kinesin-related proteins.

  相似文献   

17.
During cell division, a bipolar array of microtubules forms the spindle through which the forces required for chromosome segregation are transmitted. Interestingly, the spindle as a whole is stable enough to support these forces even though it is composed of dynamic microtubules, which are constantly undergoing periods of growth and shrinkage. Indeed, the regulation of microtubule dynamics is essential to the integrity and function of the spindle. We show here that a member of an important class of microtubule-depolymerizing kinesins, KLP10A, is required for the proper organization of the acentrosomal meiotic spindle in Drosophila melanogaster oocytes. In the absence of KLP10A, microtubule length is not controlled, resulting in extraordinarily long and disorganized spindles. In addition, the interactions between chromosomes and spindle microtubules are disturbed and can result in the loss of contact. These results indicate that the regulation of microtubule dynamics through KLP10A plays a critical role in restricting the length and maintaining bipolarity of the acentrosomal meiotic spindle and in promoting the contacts that the chromosomes make with microtubules required for meiosis I segregation.  相似文献   

18.
Mitotic kinases of the Polo and Aurora families are key regulators of chromosome segregation and cytokinesis. Here, we have investigated the role of MKlp1 and MKlp2, two vertebrate mitotic kinesins essential for cytokinesis, in the spatial regulation of the Aurora B kinase. Previously, we have demonstrated that MKlp2 recruits Polo-like kinase 1 (Plk1) to the central spindle in anaphase. We now find that in MKlp2 but not MKlp1-depleted cells the Aurora B-INCENP complex remains at the centromeres and fails to relocate to the central spindle. MKlp2 exerts dual control over Aurora B localization, because it is a binding partner for Aurora B, and furthermore for the phosphatase Cdc14A. Cdc14A can dephosphorylate INCENP and may contribute to its relocation to the central spindle in anaphase. We propose that MKlp2 is involved in the localization of Plk1, Aurora B, and Cdc14A to the central spindle during anaphase, and that the integration of signaling by these proteins is necessary for proper cytokinesis.  相似文献   

19.
We report here that disruption of a recently discovered kinesin-like protein in Drosophila melanogaster, KLP61F, results in a mitotic mutation lethal to the organism. We show that in the absence of KLP61F function, spindle poles fail to separate, resulting in the formation of monopolar mitotic spindles. The resulting phenotype of metaphase arrest with polyploid cells is reminiscent of that seen in the fungal bimC and cut7 mutations, where it has also been shown that spindle pole bodies are not segregated. KLP61F is specifically expressed in proliferating tissues during embryonic and larval development, consistent with a primary role in cell division. The structural and functional homology of the KLP61F, bimC, cut7, and Eg5 kinesin-like proteins demonstrates the existence of a conserved family of kinesin-like molecules important for spindle pole separation and mitotic spindle dynamics.  相似文献   

20.
The temporal and spatial regulation of cytokinesis requires an interaction between the anaphase mitotic spindle and the cell cortex. However, the relative roles of the spindle asters or the central spindle bundle are not clear in mammalian cells. The central spindle normally serves as a platform to localize key regulators of cell cleavage, including passenger proteins. Using time-lapse and immunofluorescence analysis, we have addressed the consequences of eliminating the central spindle by ablation of PRC1, a microtubule bundling protein that is critical to the formation of the central spindle. Without a central spindle, the asters guide the equatorial cortical accumulation of anillin and actin, and of the passenger proteins, which organize into a subcortical ring in anaphase. Furrowing goes to completion, but abscission to create two daughter cells fails. We conclude the central spindle bundle is required for abscission but not for furrowing in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号