首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Action of the C3b-inactivator on the cell-bound C3b.   总被引:13,自引:0,他引:13  
The action of C3bINA and beta 1H on cell-bound C3b is described in this paper. The alpha-polypeptide of C3b that binds covalently to cell surfaces is cleaved by the C3bINA and beta 1H into two fragments: one of 60,000 (C3b alpha-60) and another of 40,000 (C3b alpha-40) daltons. The beta-chain of C3b is unaffected by the C3bINA and beta 1H. The three polypeptides, C3b alpha-60, C3b alpha-40, and C3 beta, are held together as a single unit by disulfide bonds. This unit, referred to as C3b' is covalently bound to cell surfaces via the C3b alpha-60 polypeptide. The conversion of C3b to C3b' by C3bINA and beta 1H abolishes the ability of the C3b-bearing cells to adhere to human erythrocytes as well as the ability to form, on the cell surface, the B, D, and properdin-dependent amplification C3-convertase. However, the agglutinability of the cells with either anti-C3c or anti-C3d is not affected. Treatment of the C3b'-bearing cells with trypsin releases fragments of C3b' into solution, leaving a polypeptide of 32,000 daltons covalently linked to the membrane. Since the trypsinized cells are agglutinable by anti-C3d but not by anti-C3c, the 32,000 dalton polypeptide appears to correspond antigenically to C3d.  相似文献   

3.
It is known that a population of B-lymphocytes has receptors for the third component of complement, C3, and that these lymphocytes may be identified by their ability to form rosettes with sheep erythrocytes coated with covalently bound fragments of complement component C3. Human tonsil lymphocytes, enriched for B-cells, form rosettes with sheep erythrocytes coated with antibody and complement components C1, C4b and C3b (EAC143b cells). Fluid-phase C3 will inhibit rosette formation between EAC143b and human tonsil lymphocytes over the same concentration range as fluid-phase C3b. C3 is not cleaved to C3b during incubation with lymphocytes or with lymphocytes and EAC143b cells. Fluid-phase 125I-labelled C3 and 125I-labelled C3b bind to lymphocytes in a specific manner. The characteristics of binding of both radioiodinated C3 and radioiodinated C3b are very similar, but the binding oc C3 is again not a result of cleavage to C3b. Salicylhydroxamic acid does not inhibit binding of 125I-labelled C3 to tonsil lymphocytes at concentrations that completely inhibit binding of 125I-labelled C3 to EAC142 cells via the nascent binding site of C3b. It is concluded that C3 and C3b share a common feature involved in binding to lymphocytes bearing receptors for the third component of complement.  相似文献   

4.
The Knops/McCoy (Kn/McC) human erythrocyte blood group system belongs to the category of blood group Ag that generate so-called "high titer low avidity" antibodies in immunized transfusion recipients. Screening of red cells lacking certain high titer low avidity Ag demonstrated markedly diminished CR1 expression on McC(d-) and Kn/McC "null" (Kn(a-)McC(a-b-c-d-e-f-] erythrocytes. Additional testing by other methods confirmed these data, and biochemical assays demonstrated no detectable immunoreactive CR1 protein in membranes from Kn/McC null red cells. Human antisera to various Kn/McC Ag were then used to demonstrate that many of these antisera could be used to isolate a protein of identical m.w. to that isolated from the same cells using murine mAb CR1 antisera. Finally, protein isolated by using murine mAb anti-CR1 reacted specifically with anti-Kn/McC antibodies, demonstrating the identity of the Kn/McC and CR1 proteins. Thus, CR1 protein bears the human erythrocyte Kn/McC blood group Ag.  相似文献   

5.
1. One of the activation products of C4, C4b, was prepared, and the reactive thiol group on the alpha'-chain was radioactively labelled with iodo[2-14C]acetic acid. The alpha'-chain was isolated and the N-terminal amino acid sequence of the first 13 residues was determined. 2. C4b was cleaved by C3bINA in the presence of C4b-binding protein and C4d and C4c isolated. The radioactive label and therefore the reactive thiol group were located to C4d. 3. C4c was reduced and alkylated and the two alpha'-chain fragments of C4c were separated. 3. The molecular weights, amino acid analyses and carbohydrate content of the three alpha'-chain fragments were determined. C4d has a mol.wt. of 44500 and a carbohydrate content of 6%. The two alpha'-chain fragments of C4c have mol.wts. of 25000 (alpha 3) and 12000 (alpha 4) and carbohydrate contents of 10 and 22% respectively. 4. The N-terminal amino acid sequences of C4d, the alpha 3 and the alpha 4 fragments were determined for 18, 24 and 11 residues respectively and, by comparison with the N-terminal sequence of the C4b alpha'-chain, the 25000-mol.wt. fragment (alpha 3) was shown to be derived from the N-terminal part of the alpha'-chain. 5. C-Terminal analyses were done on the alpha'-chain and its three fragments. Arginine was found to be the C-terminal residue of C4d and of the alpha 3 fragment. The C-terminal residue of the alpha'-chain and of the alpha 4 fragment could not be identified. The order of the three fragments of the alpha'-chain is therefore: alpha 3(25000)--C4d(44500)--alpha 4(12000). The specificity of C3bINA is for an Arg--Xaa peptide bond.  相似文献   

6.
Mouse C3b/C4b inactivator (C3b/C4bINA) was purified approximately 400 times from mouse serum. It is a beta-globulin and consists of 2 disulfide bonded chains of m.w. 60,000 and 35,000. Under nonreducing conditions, its m.w. is 95,000. It cleaves the alpha'-chain of cell-bound C4b into 3 fragments: alpha 2, alpha 3, alpha 4. The alpha 2 fragments remain bound to the cell surface (C4d), and the rest of the molecule (C4c) is released into the fluid phase. In fluid phase, C3b/C4bINA cleaves the alpha'-chain of C4b in a similar manner but only in the presence of mouse or human C4-binding protein (C4-bp). Mouse C4-bp and human C3b/C4bINA do not cleave human C4b, although mouse C4-bp binds to human C4b. This incompatibility suggests that C4-bp and C3b/C4bINA must interact to cleave fluid phase C4b. Mouse C3b/C4bINA also cleaves the alpha'-chain of human C3b in solution into 2 fragments in the presence of human beta 1H. Therefore, it is likely that mouse and human C3b/C4bINA are homologous proteins. A monospecific antiserum to mouse C3b/C4bINA has been prepared in rabbits. By crossed immunoelectrophoresis, this antiserum detects, in addition to the protein described above, a fast beta-globulin with a m.w. of approximately 200,000 and antigenically identical to C3b/C4bINA but enzymatically inactive. This protein could represent a precursor of C3b/C4bINA.  相似文献   

7.
Glycoproteins C (gC) from herpes simplex virus type 1 (HSV-1) and HSV-2, gC-1 and gC-2, bind the human complement fragment C3b, although the two glycoproteins differ in their abilities to act as C3b receptors on infected cells and in their effects on the alternative complement pathway. Previously, we identified three regions of gC-2 (I, II, and III) which are important for C3b binding. In this study, our goal was to identify C3b-binding sites on gC-1 and to continue our analysis of gC-2. We constructed a large panel of mutants by using the cloned gC-1 and gC-2 genes. Most of the mutant proteins were transported to the surface of transiently transfected L cells and reacted with one or more monoclonal antibodies to discontinuous epitopes. By using 31 linker insertion mutants spread across the coding region of gC-1, we identified four regions in the ectodomain of gC-1 which are important for C3b binding, three of which are similar in position to C3b-binding regions I, II, and III of gC-2. Region III shares some similarities with the short consensus repeat found in CR1, the human complement receptor. These were, in part, the targets for construction of 20 single amino acid changes in region III of gC-1 and gC-2. These mutants identified similarities and differences in the C3b-binding properties of gC-1 and gC-2 and suggest that the amino half of region III is more important for C3b binding. However, our results do not support the concept of a structural relationship between the short consensus repeat of CR1 and gC, since mutations of some of the conserved residues, including three of four cysteines in region III, had no effect on C3b binding. Finally, we constructed four deletion mutants of gC-1, including one which lacked residues 33 to 123, as well as residues 367 to 449. This severely truncated molecule, lacking four cysteines and five potential N-linked glycosylation sites, was transported to the cell surface and retained its ability to bind monoclonal antibodies as well as C3b. Thus, the four distinct C3b-binding regions of gC-1 and several epitopes within two different antigenic sites are localized within residues 124 to 366.  相似文献   

8.
C5 convertase of the classical complement pathway is a trimolecular protein complex consisting of C4b, C2a, and C3b. In the complex there is an ester bond between C3b and C4b. We analyzed the C5 convertase formed on erythrocytes and localized the covalent binding site of C3b to a small region on C4b. The covalently linked C4b.C3b complex was purified from a detergent extract of the erythrocytes and digested with lysyl endopeptidase. An Mr 17,000 fragment containing the ester linkage between C4b and C3b was purified and its amino-terminal sequence was examined. Two amino acids were obtained at each cycle and identified with those in the sequences of C3 and C4. The sequence derived from C3 corresponded to the thioester region. The sequence derived from C4 started at Ala-1186. Alkali treatment of the fragment yielded an Mr 7,000 peptide derived from C4, which thus appeared to span the region of C4 from Ala-1186 to Lys-1259. Therefore, the covalent C3b-binding site on C4b is located within a 74-residue region of the primary structure. This finding supports the notion that after cleavage of C3 by the C4b2a complex, the covalent binding of metastable C3b to C4b is a specific reaction to form a trimolecular complex with a defined quaternary structure.  相似文献   

9.
Functional and structural studies of the activated proteins of the complement system C4b and C3b have led to the identification of cleavage products resulting from the effect of the regulatory proteins, factor I, H, and C4b binding protein (bp). In this paper we report the results of studies that investigated the capacity of plasma or serum from a wide range of phylogenetic species to yield similar cleavage products. Sera and plasma from mammals, reptiles, amphibia, and fishes are capable of cleaving fluid phase human C4b and C3b, generating apparently the same fragments as observed using normal human serum: alpha 2, alpha 3, alpha 4 from the alpha' chain of C4b: and alpha-68, alpha-46, alpha-43, and alpha-30 from the alpha' chain of C3b. When C3b bound to a cell membrane is used C3c and C3dg are generated. The generation of these fragments from C3bi is a dose-dependent reaction. There is no correlation between the evolution of the species and the quantitative capability to degrade the substrates. Birds possess only a limited capability to degrade the alpha' chain of C4b and have no cleaving activity for C3b, whereas sera from more primitive vertebrate species (chondrichthyes and agnatha) fail to participate in the reaction. Contrary to other species, the proteins in fish serum or plasma responsible for the degradation of C4b and C3b show a unique requirement for Ca2+ ions. Magnesium and barium are less effective, and in their presence a 65,000 dalton intermediate product is observed. These results demonstrate that protein(s) displaying proteolytic activity for products of complement activation, probably related to I, H, and C4bp, are present in plasma of species whose evolution have preceded humans by 300 million years. Moreover, the recognition of human substrates and the generation of fragments identical to those produced by human serum suggests that human C4b and C3b share structural characteristics with their evolutionary ancestors in the serum or plasma of the species studied.  相似文献   

10.
Purification of the human complement control protein C3b inactivator.   总被引:10,自引:3,他引:7       下载免费PDF全文
An alternative method of isolation from human plasma is described for C3b inactivator, C3bINA, the proteinase that in conjunction with either beta 1H or C4b-binding protein will hydrolyse respectively C3b or C4b, the activation products of the third, C3 and fourth, C4, components of complement. The purification is by chromatography of plasma on columns of QAE-Sephadex, wheat-germ agglutinin-Sepharose, hydroxyapatite and Sephacryl S-200. The yield of C3bINA (6 mg from 500ml of plasma) is severalfold higher than in previously described methods. The sensitivity of the assay for C3bINA has been increased by including optimal amounts of beta 1H, and it was observed that beta 1H was essential for hydrolysis by C3bINA of C3b, whether the C3b was in solution or bound to a cell surface. Native C3 is not hydrolysed by C3bINA + beta 1H, but the haemolytically inactive form that appears on prolonged storage at 4 degrees C or on freezing and thawing is hydrolysed and gives fragments of the alpha-chain of 75000 and 43000 apparent mol.wt. As the alpha'-chain of C3b, which has lost an N-terminal peptide C3a, gives fragments of 67000 and 43000 apparent mol.wt. when incubated with C3bINA + beta 1H, this suggests that the larger fragment is N-terminal and the smaller one C-terminal. The pH optimum of C3bINA with soluble substrates is 6.0, but no clear classification of the type of proteinase to which this enzyme belongs has been obtained.  相似文献   

11.
Antibody-dependent cytolytic effector lymphocytes are known to possess, in part, receptors for activated C3. Employing a model system consisting of 51Cr-labeled chicken erythrocytes and purified human peripheral lymphocytes, we investigated the effect of target cell bound C3b on antibody-dependent cellular cytotoxicity (ADCC). At concentrations of anti-target cell antibody too low to cause effective ADCC, target cell bound C3b cooperated with antibody to produce marked target cell lysis. In the presence of a 1/6.25 X 10(6) dilution of anti-chicken erythrocyte rabbit IgG, cell lysis increased from 20% to 65% by the attachment of 18,000 C3b molecules per cell. C3b-dependent enhancement of ADCC was dose dependent. It was augmented by attachment of activated properdin (P) to the C3b-bearing target cells.  相似文献   

12.
13.
14.
15.
Particles carrying C3 in a random distribution (Etan-C3) bound to C3 receptor (Raji+) cells independent of temperature and irrespective of whether the Raji cells were fixed with glutardialdehyde. In contrast, the reactivity of EAC43b, having grouped C3b in clusters, was dependent on temperature. The interaction with Raji cells was inhibited if the latter were treated with a fixative. The reaction of both Etan-C3 and EAC43b was a function of the concentration of C3 and C3b, respectively. The conclusion is drawn that for the interaction between C3/C3b-carrying particles and C receptor cells the receptors and the ligands have to be grouped in a similar typographic distribution, irrespective if this arrangement is provided already from the beginning or if it is obtained only by lateral movement of one or both reaction partners.  相似文献   

16.
The superfamily of C3b/C4b-binding proteins   总被引:8,自引:0,他引:8  
The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively, which have more limited homology with the repetitive regions in this family. All available data indicate that multiple gene duplications and exon shuffling have been important features in the divergence of this family of proteins with the 60-amino-acid repeat.  相似文献   

17.
We have demonstrated that immune complexes turn over C1, i.e., limiting quantities of immune complexes activate an excess of C1. This was readily apparent in a system of purified C1 and C1-inhibitor (C1-In) but not in normal human serum (NHS). The following results indicate that C3 and C4 are the serum factors responsible for the inhibition of C1 turnover by immune complexes. 1) In a purified protein system composed of C1 and C1-In at pH 7.5, ionic strength 0.14 M, doses of immune complexes that activated all the C1 in 60 min at 37 degrees C yielded no detectable C1 activation when C2, C3, and C4 were also present. All proteins were at their physiologic concentrations. Activation was quantified by SDS-PAGE analysis and hemolytic titration 2) In order to inactivate C3 and C4, NHS was treated with 50 mM methylamine (MeAm) for 15 min at 37 degrees C, after which the MeAm was removed by dialysis. The activities of C1, C2, and C1-In were unaffected by this treatment. Doses of immune complexes that consumed no C1 in NHS, consumed all the C1 in MeAm-treated NHS (MeAm-NHS). 3) Reconstitution of MeAm-NHS with physiologic concentrations of C3 and C4 rendered the serum again resistant to excessive C1 consumption by immune complexes. Immune complexes used in these studies included EA-IgG, EA-IgM, tetanus-human anti-tetanus, and aggregated human IgG. There appeared to be specificity to the inhibition reaction since C4 by itself could inhibit C1 consumption by EA-IgM, whereas the presence of C3 was also required to control EA-IgG. Finally, N-acetyl-L-tyrosine was added to NHS at a final concentration of 30 mM. This nucleophile did not interact with native C3 or C4, nor did it directly activate C1. However, upon the addition of low doses of immune complexes, acetyl tyrosine did yield uncontrolled C1 activation, presumably by binding nascent C3b and C4b and thereby blocking their attachment to the immune complexes. We conclude that in NHS there is a mechanism of feedback inhibition by which nascent C3b and C4b inhibit C1 turnover by immune complexes. This mechanism of control might be physiologically important in that it prevents excessive complement activation by low concentrations of immune complexes.  相似文献   

18.
19.
20.
C5 convertase of the classical complement pathway is a protein complex consisting of C4b, C2a, and C3b. Within this complex C3b binds to C4b via an ester linkage. We now present evidence that the covalent C3b-binding site on human C4b is Ser at position 1217 of C4. We also show that formation of the covalently linked C4b.C3b complex occurs in the mouse complement system and that the C3b-binding site on mouse C4b is Ser at position 1213 which is homologous to Ser-1217 of human C4. Therefore, covalent binding of C3b to a single specific site on C4b within the classical pathway C5 convertase is likely a common phenomenon in the mammalian complement system. Specific noncovalent association of metastable C3b with C4b would occur first, leading to reaction of the thioester with a specific hydroxy group. This is supported by two lines of experimental evidence, one which shows that a mutant C4 that does not make a covalent linkage with C3b is still capable of forming C5 convertase and a second in which the C4b.C3b complex has been demonstrated by cross-linking erythrocytes bearing this C5 convertase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号