首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Methanosarcina thermophila strain TM-1 to store a reserve polysaccharide was studied using both biochemical methods and thin-section electron microscopy. When grown under conditions of excess carbon and energy (either methanol or acetate) and limiting nitrogen, M. thermophila accumulated a polysaccharide which could be hydrolyzed to glucose by the enzyme amyloglucosidase. This polysaccharide reached levels of 20 mg polysaccharide per g protein in nitrogen-limited cells, while cells limited for carbon, as well as cells in the exponential phase of growth, did not accumulate significant amounts of this polysaccharide. Thin-section electron micrographs of M. thermophila showed glycogen-like inclusion granules in nitrogen-limited cells but not in carbon-limited or exponential-phase cells. These granules were stained by a polysaccharide-specific staining procedure, the PATO stain. The polysaccharide was purified from cell extracts, the iodine-polysaccharide complex gave a maximum absorption at between 500 and 510 nm. The polysaccharide was mobilized within 21 h by cells starved for a carbon/energy source. N-Limited (polysaccharide-containing) acetategrown cells could shift to methanogenesis from methanol more quickly than did C-limited acetate-grown cells lacking polysaccharide, and ATP levels remained higher in N-limited cells. The results are consistant with the hypothesis that this polysaccharide can provide carbon and energy for metabolic shifts but other storage compounds, such as polyphosphate, may also play a similar role.  相似文献   

2.
“Isosclerotan”, a polysaccharide constituent extracted with a sodium hydroxide solution from sclerotia of Sclerotinia libertiana, could be purified by the successive precipitation with the followings; a mixture of copper sulfate and sodium hydroxide, ammonium sulfate, and ethyl alcohol. The preparation proved homogeneous by ultracentrifugal analysis. From sedimentation and viscosity measurements, the molecular weight of isosclerotan was calculated as 6.13 × 106, andas 1.60 × 105 after treatment with a dilute oxalic acid solution. Isosclerotan was scarecely soluble in cold water but soluble in hot water, yielding a highly viscous solution. It exhibited a low positive optical rotation, + 23.0° (in water), and infrared spectrum had a sharp absorption at 890~898 cm?1, which indicated the prevalence of the β-glycosidic linkage in isosclerotan. Through degradation by acids and enzymes of isosclerotan, there were obtained various oligosaccharides containing β-1.3, β-1.4, and β-1.6 linkages. From results obtained by periodate oxidation and methylation, it is assumed that the polysaccharide involves the 1.3, 1.4, and 1.6 linkages in 47.7%, 16.6% and 35.7%, respectively, and a branching structure about 12.5%.  相似文献   

3.
A defined medium was developed in which Alcaligenes faecalis var. myxogenes 10C3 mutant K produced a large quantity of β-glucan 10C3K. The medium contained 4% glucose together with 0.1% citrate, succinate or fumarate as the carbon source, 0.15% (NH4)2HPO4 as the nitrogen source and mineral salts. When NaNH4HPO4, KNO3 or urea was used at a concentration of 0.03% nitrogen as the sole nitrogen source, salts of organic acid were not needed in addition to glucose.

In culture medium containing phosphate buffer (M/15, pH 6.5~8.0) large amounts of polysaccharide were formed and its yield from the 4% glucose added was about 50%. Thus, it was shown that polysaccharide production is enhanced greatly if a suitable pH for polysaccharide production is maintained during incubation.  相似文献   

4.
Biochemical and electron microscopic evidence is presented that sideramine-free fungi form iron hydroxide polymer layers on the cell surface when grown in an iron containing medium.Iron hydroxide polymer formation on the cell surface is completely prevented in sideramine producing strains of Neurospora crassa. After feeding a sideramine-free mutant of Neurospora crassa with ornithine in order to restore the sideramine synthesis the iron hydroxide coat is gradually dissolved.The addition of excess citrate and malate to the incubation medium also prevents iron polymer adsorption, suggesting that hydroxy acids may be involved in iron supply, when sideramine-free organisms are grown in iron containing media.In order to study the interaction between iron hydroxide polymer deposition upon the cell surface and iron chelating acids in Neurospora crassa, the amount and the proportion of excreted acids was studied under various experimental conditions. Gas chromatographic analysis of the acids produced under iron deficient conditions revealed that succinate, malate and citrate were present within the cells in the early growth phase. The acids were sequentially excreted into the medium in the order succinate, malate and citrate. The amount of succinate decreased after 2 days of cultivation, whereas the amount of malate and citrate continually increased. Although citrate was present within the cells from the 1st day, excretion occurred very late, generally after the 3rd day.It is suggested that sideramine-free fungi first adsorb iron as a hydroxide polymer on the cell surface, and that it is gradually solubilized by excreted hydroxy acids such as citrate or malate. Thus high local concentrations of iron chelated by hydroxy acids provide sideramine-free fungi with a continuous iron supply.Abbreviations BSTFA N,O-Bis(trimethylsilyl)-trifluoracetamide - GC Gaschromatography - EGTA Ethylenglykol-bis(2-aminoethylether) N,N-tetraacetic acid - TMS Trimethylsilyl  相似文献   

5.
When Chlorella protothecoides is grown mixotrophically in thelight in a medium rich in glucose and poor in nitrogen source(urea), one obtains the cells that are entirely devoid of chlorophylland containing only little RNA and protein. When these cells—referredto as "glucose-bleached" cells—are further grown in thelight with provision of nitrogen source, but without glucose,sequential syntheses of RNA, protein and chlorophyll take place.If the glucose-bleached cells are incubated in the dark underthe same nutritional condition, RNA, protein and chlorophyllare also successively formed in relatively small amounts. Thecells obtained under such a condition are, in many respects,similar to the cells that are obtained when the alga is grownin the dark in a medium poor in glucose and rich in the nitrogensource. These cells, which are called the "etiolated cells",are faintly green in color and contain larger amounts of RNAand protein compared with the chlorophyll-less glucose-bleachedcells. The glucose-bleached cells and the etiolated cells showapproximately the same content of DNA per cell. When the etiolatedcells are incubated in the light with provision of nitrogensource, but without glucose, they become green with active synthesisof chlorophyll and additional syntheses of RNA and protein. Based on these results and those to be reported later, it wasconcluded that the greening of the glucose-bleached cells involvesa light-independent phase followed by a light-requiring phasewhich entails the greening of cells and full organization ofchloroplasts, and that the latter process is essentially thesame as that taking place when the etiolated cells are incubatedin the light with provision of nitrogen source in the absenceof glucose. (Received September 5, 1964; )  相似文献   

6.
Summary An extracellular polysaccharide composed of glucose, fucose, arabinose and glucuronic acid in a molar proportion of 11:6:3:1 is a major end-product of photosynthesis by Palmella mucosa Kütz.The liberation of polysaccharide is related to the age of the culture. Glucose can substitute efficiently for CO2 as the source of carbon for polysaccharide synthesis. Nitrate-nitrogen from sodium, potassium and calcium salts can be used in the mineral salts medium with little differences in carbon metabolism of the alga. Ammonium nitrate produces an acidic medium which limits polysaccharide production.The incorporation of C14 into the polysaccharide from NaHC14O3 shows initially a trend toward intracellular synthesis. The C14 appears in the extracellular polysaccharide after prolonged exposure. Glucose-C14 is actively transformed to polysaccharide material which is an indication that glucose may play an important role in the synthesis of polysaccharide by Palmella mucosa Kütz.  相似文献   

7.
Increased levels of nitrogen in liquid growth medium bring about increased growth and a delay in extracellular polysaccharide production by Chlamydomonas mexicana Lewin on a per-cell basis. Addition of nitrogen to stationary phase cultures causes renewed growth and a temporary lag in polysaccharide synthesis until growth again ceases. Removal of nitrogen terminates growth, causing an immediate increase in polysaccharide synthesis. Phosphate-starved cells show a response similar to nitrogen-starved cells, indicating that the beginning of stationary phase and not nitrogen depletion causes the stimulation in extracellular polysaccharide synthesis. As similar results are assumed to occur on soil, the significance of this response is discussed.  相似文献   

8.
The rigid component of the cell walls of red macroalgae, cellulose, is lacking in the red microalgae. Instead, the cells are encapsulated within an amorphous polysaccharide. These complex sul fated polysaccharides are composed of at least 10 different sugars, but their structure is not known, When the herbicide 2,6-dichlorobenzonitrile (DCB), a compound that specifically inhibits cellulose biosynthesis, was applied to cultures of the red microalga Rhodella reticulata upon inoculation, growth was inhibited. When added during the stationary phase of growth (after cell division had ceased), DCB did not affect cell number but it did inhibit polysaccharide production. A spontaneous mutant resistant to DCB was selected; it had physiological characteristics similar to those of the wild-type parent. The composition of the cell wall polysaccharide of the mutant was totally modified, being composed almost entirely (98% of its dry matter, as compared to 2.9% in the wild type) of methyl galactose, but retaining the same sulfate content. The molecular mass of the mutant polysaccharide was, however, similar to that of the wild-type parent (~6 × 106 daltons), although its viscosity was significantly lower.  相似文献   

9.
A water-soluble polysaccharide extracted from the cytoplasms of Achlya ambisexualis and A. heterosexualis appeared to be a beta-1,3-glucan. This conclusion was based on data obtained by subjecting the glucan to infrared spectrophotometry, using Laminarin as a reference standard, and to enzymatic and acid hydrolysis followed by chromatographic examination. During the vegetative phase of the life cycle the glucan accumulates in the cytoplasm. That it could serve as a stored source of energy was indicated by its disappearance (1) from Achlya transferred from a glucose-containing to a glucose-free medium and (2) during the initiation, development, and maturation of sex organs. When development of sex organs was blocked by the addition of dimethylsulfoxide (0.1 % v/v) the consumption of stored glucan ceased, but vegetative growth and glucan accumulation continued. These effects of dimethylsulfoxide could be reversed by the addition of an excess of calcium ions.  相似文献   

10.
We have measured the turnover rate of ribosomal RNA in exponentially growing Tetrahymena thermophila cells, cells entering the plateau phase of growth, and nutrient-deprived (starved) cells. Ribosomal RNA is stable in cells in early log phase growth but it begins to turnover as the cells begin a deceleratory growth phase prior to entering a plateau state. Likewise, rRNA in cells transferred from early log phase growth to a starvation medium begins to be degraded immediately upon starvation. In both cases the degradation of rRNA exhibits biphasic kinetics. A rapid initial exponential degradation with a half time of nine and one-half hours lasting for six hours is followed by a slower exponential degradation with a half-life of 35 hours. When starved cells are transferred to fresh growth medium turnover of rRNA ceases. The evidence presented suggests that the alteration in degradation rate is a regulated process which is most likely independent of the cell cycle.  相似文献   

11.
When the gas vacuoles of Anabaena flos-aquae Bréb. ex Born. et Flah. are collapsed, the optical properties of the alga change. While this may suggest a light-shielding role, photosynthetic measurements indicate that intact gas vacuoles reduce the light falling on the thylakoids by only 4%, or less. Intact gas vacuoles offer no protection against the lethal effects of ultraviolet light. When the alga is grown at high light intensity the gas vacuoles are fewer in number but are oriented peripherally in the cells. However, this does not markedly affect their light shielding efficiency. Spectrophotometric measurements carried out by others indicate a light shielding role by gas vacuoles in a non-planktonic blue-green alga, Nostoc muscorum Kütz., but do not give a quantitative estimate of this effect. In Anabaena no definite evidence of light-shielding is obtained by such a method. All of the experiments described were conducted with dilute algal suspensions to investigate shielding effects in individual cells. Possible self-shading effects in dense suspensions and surface water blooms require further investigation.  相似文献   

12.
The effects of copper and zinc on Spirulina platensis (Nordst.) Geitl. growth and the capability of this cyanobacterium for accumulation of these heavy metals (HMs) were studied. S. platensis tolerance to HMs was shown to depend on the culture growth phase. When copper was added during the lag phase, its lethal concentration was 5 mg/l, whereas 4 mg/l were lethal during the linear growth phase. Zinc concentration of 8.8 mg/l was lethal during the linear but not lag phase of growth. HM-treated S. platensis cells were capable for accumulation of tenfold more copper and zinc than control cells. Independently of Cu2+ content in the medium and of the growth phase, cell cultures accumulated the highest amount of this metal as soon as after 1 h, which may be partially determined by its primary sorption by cell-wall polysaccharides. A subsequent substantial decrease in the intracellular copper content occurred due to it secretion, which was evident from the increased metal concentration in the culturing medium. When zinc was added during the linear growth phase, similar pattern of its accumulation was observed: the highest content after 1 h and its subsequent decrease to the initial level. When the initial density of the culture was low and the cells had much time to adapt to HM, zinc accumulated during the entire linear growth phase, and thereafter the metal was secreted to the medium. The mechanisms of S. platensis tolerance to HM related to both their sorption by the cell walls and secretion of metal excess into the culturing medium and its conversion into the form inaccessible for the cells are discussed.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 259–265.Original Russian Text Copyright © 2005 by Nalimova, Popova, Tsoglin, Pronina.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

13.
A novel marine ice-nucleating bacterium, KUIN-5, was isolated from a marine algae, Monostroma latissum. Strain KUIN-5 was identified as a Pseudomonas sp. from its characteristics and taxonomies; the optimum temperature and pH for its growth were 25°C and 6.0, respectively. When strain KUIN-5 was aerobically cultured in Carlucci-Pramer medium (pH 6.0) for 50 h at 25°C, the highest ice-nucleating activity of the cells among the media for marine bacteria was obtained, and the ice-nucleating temperature, T50, was indicated to be ? 3.2°C. Also, the optimum concentration of NaCl for the growth in this medium, which was prepared with distilled water instead of seawater, was 2.0% (w/v) and then the ice-nucleating activity was inversely proportional to the NaCl concentration. Moreover, when strain KUIN-5 was cultured in Davis medium under optimum conditions, it produced insoluble polysaccharide (IPS) in the culture. The maximum amount of IPS production by strain KUIN-5 was 84.5 mg/ml of medium under optimum conditions. Therefore, this IPS was isolated and could be identified as cellulose, based on TLC or HPLC of the acid hydrolysate, and GC-MS of the acetylated polyalcohol prepared by periodate oxidation and Smith degradation of this polysaccharide. This is the first report of cellulose production by a marine ice-nucleating bacterium.  相似文献   

14.
The biosynthesis of asparaginase II in Saccharomyces cerevisiae is sensitive to nitrogen catabolite repression. In cell cultures growing in complete ammonia medium, asparaginase II synthesis is repressed in the early exponential phase but becomes derepressed in the midexponential phase. When amino acids such as glutamine or asparagine replace ammonium ion in the growth medium, the enzyme remains repressed into the late exponential phase. The three nitrogen compounds permit a similar rate of cell growth and are assimilated at nearly the same rate. In the early exponential phase the internal amino acid pool is larger in cells growing with glutamine or asparagine than in cells growing with ammonium sulfate as the sole source of nitrogen.  相似文献   

15.
The aerobic nitrogen-fixing cyanobacterium, Cyanothece sp. BH68K produces non-mucoid variants defective in exopolysaccharide (EPS) production at a high frequency. The EPS-producing wild-type colonies (EPS+) have a characteristic smooth and shiny appearance which allows them to be easily distinguished from the EPS- variants. When grown on agar plates lacking a source of combined nitrogen, the EPS- variants exhibited a yellow phenotype typical of nitrogen starvation. These EPS- variants showed varying degrees of reversion back to the EPS+ phenotype. After reversion, they exhibited normal diazotrophic growth on agar plates. Alcian blue and ruthenium red staining indicated that the EPS is an acidic polysaccharide, which is present as a loose network around the cell, and which can be completely removed by low speed centrifugation. The accumulation of EPS takes place mainly during the stationary phase. All EPS- variants failed to produce any EPS. Analysis of growth of wild-type and EPS- variants revealed that EPS production is beneficial for diazotrophic growth on solid medium, but not in liquid medium. In addition, EPS phenotypic alteration may have some advantage in the dispersal of cells from one place to another in the natural environment.K.J. Reddy. J. Tang and R.L. Bradley are, and B.W. Soper was, with the Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY 13902; B.W. Soper is now with the Jackson Laboratory, Box 302, 600 Main St., Bar Harbor, ME 04609.  相似文献   

16.
Two bacteria were isolated from the activated sludge sample of a wastewater treatment plant in Dublin by enrichment culture technique with toluene as the sole source of carbon and energy. They were identified as Aeromonas caviae (To-4) and Pseudomonas putida (To-5). The growth of these bacteria depended on the manner in which toluene was supplied. In general, growth was better when toluene was supplied in the vapour phase. When toluene was added directly to the growth medium it was found to be toxic to the organisms but the toxic effect could be alleviated in the presence of other carbon sources and by the acclimation of the cells. The growth of To-4 on toluene has never been previously reported.  相似文献   

17.
When the unicellular organism Prototheca zopfii was grown on a malt-agar medium, a mixture of polysaccharides was synthesised which could be subsequently extracted from the dried cells with hot water and hot alkali. The major polysaccharide was a galactan which had a branched structure with main chains of (1→6)-linked D-galactopyranose residues, and ≈ 10% of side chains containing terminal D-galacto-furanose residues. A glycogen-type polysaccharide and a (1→4)-linked mannan were also produced.  相似文献   

18.
Cells of the fungus Aureobasidium pullulans ATCC 201253 were entrapped within 4% agar cubes or 5% calcium alginate beads and were examined for their production of the polysaccharide pullulan in batch bioreactors. The batch bioreactors were utilized twice for 168 hours of polysaccharide production in medium containing corn syrup as a carbon source. The agar-entrapped cells produced nearly equivalent pullulan concentrations during both production cycles. The alginate-entrapped cells produced higher polysaccharide levels during the second cycle compared to the levels observed during the initial cycle. The agar-entrapped cells elaborated a polysaccharide with a higher pullulan content than did the alginate-entrapped cells during both production cycles.  相似文献   

19.
Polyclonal antibodies against P-l, a pectic polysaccharide fraction extracted with 0.5m NaOH from the kernels of Prunus mume and consisted of arabino-galacturonan, and 1–3, the partial acid (0.1 m trifluoroacetic acid) hydrolysate of P-l, were prepared in Japanese white rabbits. Competitive elisa experiments strongly suggested that anti P-l and anti 1–3 antibodies were different but P–l and 1–3 cross-reacted with each other to recognize a partly similar epitope structure. The reactivities of polysaccharide fractions from the raw flesh of P. mume, and the kernels of apricot and peach extracted with either water or sodium hydroxide were examined using both antisera by the indirect competitive elisa method. The polysaccharide fractions extracted with sodium hydroxide solutions had the reactivities but not those extracted with cold and hot water. These facts suggested that the similar structure of polysaccharides to P-l was present in the flesh of P. mume and the kernels of apricot and peach. However, neither pectin of apple nor citrus had reactivity with each antiserum. P-l would be different in chemical structure from a commercially available pectin, a water-soluble polysaccharide from apple and citrus.  相似文献   

20.
This study investigated physicochemical properties of soy soluble polysaccharide (SSP) and pectinase-hydrolysed soy soluble polysaccharide (PH-SSP) from okara, the residue from soy milk production, and their influences when used as a fibre source in oil-in-water (o/w) emulsions. Although pectinase hydrolysed only the carbohydrate fraction in SSP, it resulted in the self-association of PH-SSP to the large-size aggregates. When PH-SSP was added to liquid emulsion containing 3.33% (w/v) rice bran oil and 3.75% (w/v) heated soy protein, it regulated the contents of protein in serum phase, sediment phase and at oil–water interface. The types and contents of soy proteins in the serum phase and sediment phase could be manipulated by pre-heating of soy proteins at 80 °C for 30 min and the addition of PH-SSP. The presence of PH-SSP (0–6% w/v) induced different distribution of proteins to the sediment phase and subsequent in vitro protein digestion in the emulsion. Overall, this study proposed the means to design the distributions of proteins in different phases of o/w emulsion for different degrees of oil release, emulsion stability and protein-polysaccharide coacervation during the course of in vitro peptic and tryptic digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号