首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the DNA primase of IncP plasmids was examined with a derivative of RP4 containing Tn7 in the primase gene (pri). The mutant was defective in mediating bacterial conjugation, with the deficiency varying according to the bacterial strains used as donors and recipients. Complementation tests involving recombinant plasmids carrying cloned fragments of RP4 indicated that the primase acts to promote some event in the recipient cell after DNA transfer and that this requirement can be satisfied by plasmid primase made in the donor cell. It is proposed that the enzyme or its products or both are transmitted to the recipient cell during conjugation, and the role of the enzyme in the conjugative processing of RP4 is discussed. Specificity of plasmid primases was assessed with derivatives of RP4 and the IncI1 plasmid ColIb-P9, which is known to encode a DNA primase active in conjugation. When supplied in the donor cell, neither of the primases encoded by these plasmids substituted effectively in the nonhomologous conjugation system. Since ColIb primase provided in the recipient cell acted weakly on transferred RP4 DNA, it is suggested that the specificity of these enzymes reflects their inability to be transmitted via the conjugation apparatus of the nonhomologous plasmid.  相似文献   

2.
During bacterial conjugation, the single-stranded DNA molecule is transferred through the cell envelopes of the donor and the recipient cell. A membrane-spanning transfer apparatus encoded by conjugative plasmids has been proposed to facilitate protein and DNA transport. For the IncPalpha plasmid RP4, a thorough sequence analysis of the gene products of the transfer regions Tra1 and Tra2 revealed typical features of mainly inner membrane proteins. We localized essential RP4 transfer functions to Escherichia coli cell fractions by immunological detection with specific polyclonal antisera. Each of the gene products of the RP4 mating pair formation (Mpf) system, specified by the Tra2 core region and by traF of the Tra1 region, was found in the outer membrane fraction with one exception, the TrbB protein, which behaved like a soluble protein. The membrane preparation from Mpf-containing cells had an additional membrane fraction whose density was intermediate between those of the cytoplasmic and outer membranes, suggesting the presence of attachment zones between the two E. coli membranes. The Tra1 region is known to encode the components of the RP4 relaxosome. Several gene products of this transfer region, including the relaxase TraI, were detected in the soluble fraction, but also in the inner membrane fraction. This indicates that the nucleoprotein complex is associated with and/or assembled facing the cytoplasmic site of the E. coli cell envelope. The Tra1 protein TraG was predominantly localized to the cytoplasmic membrane, supporting its potential role as an interface between the RP4 Mpf system and the relaxosome.  相似文献   

3.
We surveyed plasmids representative of most incompatibility groups for their conferred deoxyribonucleic acid (DNA) primase activity. RP4 (IncP) was one of the few with such activity although, unlike the derepressed IncIalpha plasmids (which also specify a primase), it did not suppress the dnaG mutation. Using deletion and Tn7 derivatives of RP4, we located the presumed primase structural gene (pri) in the 37- to 42-kilobase region. Tn7 insertions in the adjacent Tra1 region also reduced or caused overproduction of primase. We purified the RP4 primase to a single polypeptide of molecular weight 118,000. It is an anisometric molecule and functions as a monomer, initiating complementary strand synthesis on phi X174 DNA in Escherichia coli dnaG cell extracts in the presence of ribonucleotide triphosphates and rifampin. It is immunologically unrelated to either the E. coli dnaG or the IncIalpha plasmid-specified DNA primases. RP4 pri mutants conjugated with a lower efficiency into some bacterial species, including Salmonella typhimurium. Back-transfer experiments showed that this effect was recipient specific. There was also a comparable reduction in mobilization efficiency of R300B by RP4 pri into such recipients. Loss of RP4 primase led to detectable plasmid instability. The RP4-specified primase therefore seems to serve two functions: the single DNA strand transferred during conjugation is primed by it in the recipient cell, and it appears to be necessary for the efficient priming of discontinuous plasmid DNA replication despite the presence of the chromosomal priming system.  相似文献   

4.
A general, reliable conjugation system for Agrobacterium tumefaciens in the absence of plant tissue is described in which A. tumefaciens can serve either as the donor or recipient of plasmid deoxyribonucleic acid with reasonable efficiency. Plasmid RP4 was transferred from Escherichia coli to A. tumefaciens and from strain of A. tumefaciens. Both RP4 and the A. tumefaciens virulence-associated plasmids were detected by alkaline sucrose gradients in A. tumefaciens strains A6 and C58 after mating with E. coli J53(RP4). The pathogenicity (tumor foramtion) of strains A6 and C58 and the sensitivity of strain C58 to bacteriocin 84 were unaffected by the acquistion of RP4 by the Agrobacterium strains. Plasmid R1drd-19 was not transferred to A. tumefaciens. Transformation experiments with plasmid deoxyribonucleic acid were unsuccessful, even though, in the case of RP4, conjugation studies showed taht the deoxyribonucleic acid was compatible with that of the recipient strains.  相似文献   

5.
The broad host-range IncP-1 plasmids RP4 and RK2 were transferred by conjugation from Escherichia coli to Alcaligenes eutrophus H16. Among the transconjugants selected on media containing tetracycline, a considerable number did not express kanamycin resistance. By comparing restriction patterns of plasmids isolated from a large number of transconjugants a variety of different deletion derivatives were found. All of these possess more or less extended deletions always including parts of the tra 1-region. The plasmids RP4 and RK2, once established in A. eutrophus H16 showed a high stability and it can be concluded that deletion formation is connected with the conjugation process. Evidence is given that degradation of DNA entering an A. eutrophus recipient cell during the conjugative transfer process may be involved in deletion formation. Furthermore, the finding of a small deletion derivative of RP4 lacking the transacting replication function trfB and the entire kil-kor-system may allow the assumption that these gene functions are not essential for replication and maintenance of RP4 in A. eutrophus hosts.  相似文献   

6.
Tetracycline resistance was transferred at frequencies between 10(-7) and 10(-6) per recipient cell in anaerobic matings between two strains of the strictly anaerobic rumen bacterium Bacteroides ruminicola. The donor strain, 223/M2/7, was a multiple-plasmid-bearing tetracycline-resistant strain from the ovine rumen, and the recipient, F101, was a rifampin-resistant mutant of B14, a bovine strain belonging to B. ruminicola subsp. brevis. Resistance transfer could occur in the presence of DNase, but not in dummy mating mixtures in which filtrate from a donor culture replaced donor cells. Acquisition of tetracycline resistance by the recipient was accompanied by the appearance of a 19.5-kilobase pair plasmid (designated pRRI4) which was homologous with a plasmid of similar size and restriction pattern present in the donor strain. A transconjugant (F115) carrying pRRI4 was also able to act as a donor of tetracycline resistance and plasmid DNA in matings with another recipient. Derivatives of F115 that had spontaneously lost tetracycline resistance lacked detectable plasmid DNA. It is concluded that pRRI4 mediated the transfer of tetracycline resistance. Transfer of resistance was not detectably enhanced by pregrowth of the donor in medium containing tetracycline. Transfer of tetracycline resistance was not detected from 223/M2/7 to a strain, 23 belonging to B. ruminicola subsp. ruminicola.  相似文献   

7.
Tetracycline resistance was transferred at frequencies between 10(-7) and 10(-6) per recipient cell in anaerobic matings between two strains of the strictly anaerobic rumen bacterium Bacteroides ruminicola. The donor strain, 223/M2/7, was a multiple-plasmid-bearing tetracycline-resistant strain from the ovine rumen, and the recipient, F101, was a rifampin-resistant mutant of B14, a bovine strain belonging to B. ruminicola subsp. brevis. Resistance transfer could occur in the presence of DNase, but not in dummy mating mixtures in which filtrate from a donor culture replaced donor cells. Acquisition of tetracycline resistance by the recipient was accompanied by the appearance of a 19.5-kilobase pair plasmid (designated pRRI4) which was homologous with a plasmid of similar size and restriction pattern present in the donor strain. A transconjugant (F115) carrying pRRI4 was also able to act as a donor of tetracycline resistance and plasmid DNA in matings with another recipient. Derivatives of F115 that had spontaneously lost tetracycline resistance lacked detectable plasmid DNA. It is concluded that pRRI4 mediated the transfer of tetracycline resistance. Transfer of resistance was not detectably enhanced by pregrowth of the donor in medium containing tetracycline. Transfer of tetracycline resistance was not detected from 223/M2/7 to a strain, 23 belonging to B. ruminicola subsp. ruminicola.  相似文献   

8.
PsiB, an anti-SOS protein, shown previously to prevent activation of RecA protein, was purified from the crude extract of PsiB overproducing cells. PsiB is probably a tetrameric protein, whose subunit has a sequence-deduced molecular mass of 15741 daltons. Using an immuno-assay with anti-PsiB antibodies, we have monitored PsiB cell concentrations produced by F and R6-5 plasmids: the latter type produces a detectable level of PsiB protein while the former does not. The discrepancy can be assigned to a Tn10 out-going promoter located upstream of psiB. When we inserted a Tn10 promoter upstream of F psiB, the F PsiB protein concentration reached the level of R6-5 PsiB. We describe here the physiological role that PsiB protein may have in the cell and how it causes an anti-SOS function. We observed that PsiB protein was transiently expressed by a wild-type F sex factor during its transmission to an Escherichia coli K-12 recipient. In an F+ x F- cross, PsiB concentration increased at least 10-fold in F- recipient bacteria after 90 minutes and declined thereafter; the psiB gene may be repressed when F plasmid replicates vegetatively. PsiB protein may be induced zygotically so as to protect F single-stranded DNA transferred upon conjugation. PsiB protein, when overproduced, may interfere with RecA protein at chromosomal single-stranded DNA sites generated by discontinuous DNA replication, thus causing an SOS inhibitory phenotype.  相似文献   

9.
10.
Plasmid RP4 transfer between introduced pseudomonads was studied in non-rhizosphere and rhizosphere soil. The addition of nutrients to the non-rhizosphere soil stimulated plasmid transfers between introduced donor and recipient cells, and no transfer was detected in nonamended soil. Transfer was also detected in soil in a model rhizosphere, but not in corresponding non-rhizosphere soil. Colony hybridization with whole plasmid RP4 DNA as a probe was employed to detect transfers to indigenous organisms in soil. Although transfers to introduced recipient cells were easily detected in parallel controls, no indigenous organisms were identified that had received RP4. Background levels of soil organisms with the RP4 resistance pattern were considerable, and about 10% of these populations contained DNA sequences with homology to RP4. However, no plasmids could be detected in any of 20 isolates, nor was resistance transfer to aPseudomonas fluorescens recipient detected in filter matings.  相似文献   

11.
The sog gene of the conjugative plasmid ColIb-P9 specifies two sequence-related polypeptides with the N-terminal third of the larger product having DNA primase activity. To resolve the function of the C-terminal portion of the polypeptides, we constructed a ColIb mutant containing a Tn5 insertion in the 3' region of sog. The mutation truncated sog gene products without inactivating DNA primase and rendered the plasmid defective in conjugation. Tests for the presence of conjugative pili, for complementation by a sog+ recombinant, and for mobilization of small origin of transfer (oriT) recombinant plasmids indicated that the mutant ColIb allows conjugative aggregation of cells but it is defective in DNA transfer at some stage subsequent to its initiation at oriT. Physical evidence is given that normal sog polypeptides are among a group of proteins transferred selectively from the donor to the recipient cell by a conjugation-specific process. No transfer of the mutant sog proteins was detected. It is proposed that the C-terminal region of sog polypeptides facilitates transfer of single-stranded ColIb DNA between conjugating cells following initiation of transfer at the oriT site, and that in this role the proteins are transmitted to the recipient cell.  相似文献   

12.
Selective transfer of the two products of the ColIb primase gene, sog, from donor to recipient cell during conjugation was demonstrated by two independent methods. The transfer of these tra proteins was unidirectional and dependent on DNA transfer. The Sog polypeptides were localized to the cytoplasm of the donor cell, but they appeared to interact with other tra gene products located in the inner membrane. After cell mating, the transferred polypeptides were found to be in the cytoplasm of the recipient cell, and it is estimated that as many as 500 Sog polypeptides were transferred per round of conjugation. It is proposed that these proteins are transferred as a result of an interaction with the single-stranded DNA and that the transferred strand may be coated with Sog polypeptides.  相似文献   

13.
The plasmid RP4::Mu cts62 is transferred from Escherichia coli cells into a recipient strain Erwinia carotovora 268 by conjugation with the frequency 1.5-5 x 10(-7) per donor cell. The maximal frequencies of transfer are obtained by cultivation of donor and recipient cells for 3-5 h on the filters. Structural and functional validity of the plasmid in transconjugants is expressed in preservation of all antibiotic-resistant markers of RP4, thermosensitivity to growth at 42 degrees C as well as spontaneous and thermally-induced production and zygotic induction of bacteriophage determined by the genome of Mu cts62, total length of the plasmid restricts. Location and orientation of Mu cts62 genome in the plasmid restricts. Location and orientation of Mu cts62 genome in the plasmid RP4::Mu cts62 in Erwinia carotovora transconjugant cells has been determined. A single bacteriophage genome has been shown to transpose into the chromosome of the cell with the elimination of RP4 fragment under the conditions of thermal induction.  相似文献   

14.
Transfer inhibition of RP4 by F factor   总被引:6,自引:0,他引:6  
When RP4 and F factors were brought together into one E. coli cell, the F factor reduced 500-1000-fold the frequency of transfer of RP4. However, F had almost no effect on the surface exclusion and pilus formation by RP4. In contrast, RP4 did not affect the transfer of F. Using in vitro recombinant DNA techniques, a gene of F responsible for the above-mentioned transfer inhibition of RP4 was located within the BamHI fragment (40.4-42.8 kb) of the mini-F sequence on F. From the result of product analysis using minicells, the responsible gene in the BamHI fragment was inferred to encode the 33 K protein.  相似文献   

15.
pSAM2 is an 11 kb integrative element from Streptomyces ambofaciens that is capable of conjugal transfer. A system based on differential DNA modification by SalI methyltransferase was used to localize pSAM2 in the donor or recipient strain, and thus to determine the various steps associated with transfer. Initiation (i.e. excision and replication of pSAM2 in the donor) occurs a few hours after mating with a recipient strain. pSAM2 replicates in the recipient strain, spreads within the mycelium and then integrates into the chromosome. Transfer generally involves single-stranded DNA. In Streptomyces, only a few genes, such as traSA for pSAM2, are required for conjugal transfer. Using the differential sensitivity to the SalI restriction-modification system of transfers involving single- and double-stranded DNA, we found that pSAM2 was probably transferred to the recipient as double-stranded DNA. This provides the first experimental evidence for the transfer of double-stranded DNA during bacterial conjugation. Thus, TraSA, involved in pSAM2 transfer, and SpoIIIE, which is involved in chromosome partitioning in Bacillus subtilis, display similarities in both sequence and function: both seem to transport double-stranded DNA actively, either from donor to recipient or from mother cell to prespore.  相似文献   

16.
The mutant RP4ts12, derived from the R-factor RP4 and thermosensitive in replication, is incorporated into the chromosome A3dna(ts) of E. coli K12, thus suppressing dnaA mutation. The integration of this factor into the chromosome leads to the formation of Hfr strains of two types: the strains of the first type transfer plasmid markers to recipient cells earlier than to chromosomal ones; the strains of the second type transfer plasmid markers to recipient cells after chromosomal ones. During conjugation the R-factor integrated into the chromosome dissociates from chromosomal DNA introduced into the recipient cell and becomes autonomous.  相似文献   

17.
The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10-5 to 10-7 per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 × 10-3 per recipient.  相似文献   

18.
J Duke  D G Guiney 《Plasmid》1983,9(2):222-226
The role of the lipopolysaccharide (LPS) structure in the recipient cell during bacterial conjugation was studied using a series of well-defined LPS mutations in Salmonella minnesota. The plasmids Flac (IncFI) and R1drd19 (IncFII) transferred at a high frequency to the smooth S218 parent strain and the rough LPS mutants. However, R64drd1 1 (IncI alpha) transferred poorly to the LPS mutants compared with transfer to the smooth LPS parent strain. The decrease in R64drd1 1 transfer frequency correlated with the extent of the defect in LPS structure, suggesting that intact LPS on the recipient is a major requirement for R64drd1 1 mating. Transfer of the P-group plasmid, RK2, was not affected by changes in LPS structure. These results show that plasmids use different cell surface structures during conjugation, and that LPS is particularly important for R64drd1 1 transfer.  相似文献   

19.
Donor bacteria containing JCFL39, a temperature-sensitive traD mutant of the F sex factor, were used at the nonpermissive temperature to accumulate stable mating pairs with recipient cells. At this stage in conjugation, extracellular F pili were removed by treatment with 0.01% sodium dodecyl sulfate. Upon then shifting to the permissive temperature for JCFL39, transfer of the F plasmid was observed. The mating pairs that were accumulated with JCFL39 at the nonpermissive temperature were readily observed by electron microscopy in wall-to-wall contact with the recipient bacteria. These results demonstrate that the traD product, which is known to be required in transferring DNA to a recipient bacterium, acts after the stage at which extracellular F pili are required. In addition, we concluded that DNA transfer takes place while donor and recipient cells are in surface contact and not necessarily through an extended F pilus as envisioned in some models of bacterial conjugation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号