首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Eight coordinately regulated operons constitute the kor regulon of the IncP alpha plasmid RK2. Three operons specify functions required for replication initiation, conjugative transfer, and control of gene expression. The functions of the other operons, including those of the four coregulated operons that compose the kilA, kilC, and kilE loci, have not been determined. Here, we present the first evidence that a kil determinant is involved in IncP plasmid maintenance. Elevation of KorC levels specifically to reduce the expression of the KorC-regulated kilC and kilE operons severely affected the maintenance of both the IncP alpha plasmid RK2lac and the IncP beta plasmid R751 in Pseudomonas aeruginosa but had little effect on plasmid maintenance in Escherichia coli. Precise deletion of the two kilE operons from RK2lac was achieved with the VEX mutagenesis system for large genomes. The resulting plasmid showed significant loss of stability in P. aeruginosa only. The defect could be complemented by reintroduction of kilE at a different position on the plasmid. The instability of the RK2lac delta kilE mutant did not result from a reduction in average plasmid copy number, reduced expression of kilC, decreased conjugative transfer, or loss of the korE regulator. We found that both the par and kilE loci are required for full stability of RK2lac in P. aeruginosa and that the par and kilE functions act independently. These results demonstrate a critical role for the kilE locus in the stable inheritance of RK2 in P. aeruginosa.  相似文献   

8.
Broad-host-range plasmid RK2 encodes several different kil genes which are potentially lethal to an Escherichia coli host. The kil genes and the essential RK2 replication gene trfA are regulated by the products of kor genes. We have shown previously that kilA can be controlled by a constitutively expressed korA gene. In this study, we have found that the wild-type, autoregulated korA gene is insufficient for control of kilA cloned on high-copy-number plasmids. One of two other genes must also be present with korA. One gene is korB, originally discovered by its ability to control the determinants in the kilB region and later found to affect expression of both trfA and korA. The other is a new gene, korE, which has been cloned from the 2.2' to 4.1' region located between korC and kilA. Studies with a kilA-cat fusion suggest that korA, korB, and korE all participate in the control of kilA gene expression.  相似文献   

9.
10.
The kil-kor regulon of promiscuous plasmid RK2 includes the replication initiator gene trfA and several potentially host-lethal kil loci (kilA, kilB, kilC, kilE), whose functions may be involved in plasmid maintenance or broad host range. The kilA locus consists of a single operon of three genes (klaA, klaB, klaC), each of which is lethal when expressed from the klaA promoter in the absence of repressors encoded by korA and korB. In this study, we examined the effects of the unregulated klaA gene on the host cell. Bacteriophage lambda was used to construct a transducing phage (lambda pklaA-1) that allows efficient introduction of the klaA gene into Escherichia coli. Cells lacking korA and korB (to allow uncontrolled expression of klaA) and expressing lambda repressor (to prevent phage lytic growth) are killed by lambda pklaA-1. Cell death is dependent on the klaA structural gene, independent of the SOS system of the host, and is prevented by the presence of korA and korB. lambda pklaA-1 was used to synchronously infect cells lacking korA and korB to determine the effects of klaA on the cells over time. The earliest effects, visible at two hours post-infection, are inhibition of growth of the culture, formation of elongated cells, and striking changes in the appearance of the outer membrane. After four to five hours, the viability of the culture declined sharply and macromolecular synthesis ceased. The distinct class of early events is consistent with the hypothesis that the KlaA polypeptide interacts with a specific target in the host cell.  相似文献   

11.
12.
The korB gene is a major regulatory element in the replication and maintenance of broad host-range plasmid RK2. It negatively controls the replication gene trfA, the host-lethal determinants kilA and kilB, and the korA-korB operon. Here, we present the nucleotide sequence of an 1167 base-pair region that encodes korB. Using sequence data from korB mutants, we identified the korB structural gene. The predicted polypeptide product is negatively charged and has a molecular weight of 39,015, which is considerably less than that estimated by its electrophoretic mobility in SDS/polyacrylamide gels. Secondary-structure predictions of korB polypeptide revealed three closely spaced helix-turn-helix regions with significant homology to similar structures in known DNA-binding proteins. The korB gene, like all other sequenced RK2 genes, shows a strong preference for codons ending in a G or C residue. This is similar to codon usage by genes of Klebsiella and Pseudomonas, the original hosts for RK2 and some closely related plasmids. We also sequenced the site of transposon Tn76 insertion in the host-range mutant pRP761 and found it to be located immediately upstream from korB in the incC gene. Finally, we report the presence of sequences resembling a replication origin within the korB structural gene: a cluster of four 19 base-pair direct repeats and a nearby potential binding site for Escherichia coli dna A replication protein.  相似文献   

13.
14.
15.
The normally silent 4.5 kb tellurite resistance transposon Tn521 of RP4 has been shown to carry sequences from both the flanking kilA and korA loci of this broad host range plasmid. The major portion of both of these sequences were used as probes to examine DNA homology in Southern transfer hybridization experiments with plasmid recipients of Tn521 chosen from varying incompatibility groups. In the case of every recipients molecule analyzed using either probe, DNA homology was observed.  相似文献   

16.
We have identified intrinsic high-level resistance (HLR) to tellurite, selenite, and at least 15 other rare-earth oxides and oxyanions in the facultative photoheterotroph Rhodobacter sphaeroides grown either chemoheterotrophically or photoheterotrophically. Other members of the class Proteobacteria, including members of the alpha-2 and alpha-3 phylogenetic subgroups, were also shown to effect the reduction of many of these compounds, although genera from the alpha-1, beta-1, and gamma-3 subgroups did not express HLR to the oxyanions examined. Detailed analyses employing R. sphaeroides have shown that HLR to at least one class of these oxyanions, the tellurite class (e.g., tellurate, tellurite, selenate, selenite, and rhodium sesquioxide), occurred via intracellular oxyanion reduction and resulted in deposition of metal in the cytoplasmic membrane. The concomitant evolution of hydrogen gas from cells grown photoheterotrophically in the presence of these oxyanions was also observed. HLR to tellurite class oxyanions in R. sphaeroides was not affected by exogenous methionine or phosphate but was reduced 40-fold by the addition of cysteine to growth media. In contrast HLR to the periodate class oxyanions (e.g., periodate, siliconate, and siliconite) was inhibited by extracellular PO4(3-) but did not result in metal deposition or gas evolution. Finally, we observed that HLR to arsenate class oxyanions (e.g., arsenate, molybdate, and tungstate) occurred by a third, distinct mechanism, as evidenced by the lack of intracellular metal deposition and hydrogen gas evolution and an insensitivity to extracellular PO4(3-) or cysteine. Examination of a number of R. sphaeroides mutants has determined the obligate requirement for an intact CO2 fixation pathway and the presence of a functional photosynthetic electron transport chain to effect HLR to K2TeO3 under photosynthetic growth conditions, whereas functional cytochromes bc1 and c2 were required under aerobic growth conditions to facilitate HLR. Finally, a purification scheme to recover metals from intact bacterial cells was developed.  相似文献   

17.
The 8.9-kilobase Streptomyces plasmid pIJ101 is self-transmissible at high frequency into recipient strains. By genetic analysis of the transfer region of the plasmid, we identified six plasmid-encoded loci involved in gene transfer and the associated pocking phenomenon. Two loci, kilA and kilB, could not be cloned into Streptomyces lividans on a minimal pIJ101-based replicon unless suitable kil-override (kor) genes were present, either in cis or in trans. korA could control the lethal effects of both kilA and kilB, whereas korB could control only the effects of kilB. KilB mutants were defective in their pocking reaction; kilA mutants produced no visible pocks whatsoever. Mutations in two other loci, tra and spd, produced no pocks and defective pocks, respectively. These results suggest that kilA, kilB, tra, and spd are intimately involved in plasmid transfer and that the actions of kilA and kilB are regulated by the products of the korA and korB genes.  相似文献   

18.
The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon. Using DNA microarrays we found that, in addition to cysH, almost all of the genes required for sulfate assimilation are constitutively expressed in cysK mutants. These results indicate that CysK, besides its enzymatic role in cysteine biosynthesis, is a global negative regulator of genes involved in sulfur metabolism.  相似文献   

19.
The genes glnA, ntr, nif or their promoters from Klebsiella pneumoniae cloned on the vectors, based on the plasmid RSF1010, were introduced into Rhodobacter sphaeroides cells. It was found that K. pneumoniae genes glnA, nifB, nifE, nifL and nifH are not expressed in R. sphaeroides. Neither was the glnA gene from cyanobacterium Anabaena 7120 expressed in R. sphaeroides. No functional activity of K. pneumoniae product of ntrA gene which is expressed from its own promoter, and the product of the gene nifA which is expressed from the constitutive promoter of the kanamycin resistance gene of the transposon Tn903, was detected. The implications of these findings are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号