首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The PhoQ/PhoP two-component signal transduction system is conserved in various Gram-negative bacteria and is often involved in the expression of virulence in pathogens. The small inner membrane protein SafA activates PhoQ in Escherichia coli independently from other known signals that control PhoQ activity. We have previously shown that SafA directly interacts with the sensor domain of the periplasmic region of PhoQ (PhoQ-SD) for activation, and that a D179R mutation in PhoQ-SD attenuates PhoQ activation by SafA. In this study, structural comparison of wild-type PhoQ-SD and D179R revealed a difference in the cavity (SD (sensory domain) pocket) found in the central core of this domain. This was the only structural difference between the two proteins. Site-directed mutagenesis of the residues surrounding the SD pocket has supported the SD pocket as a site involved in PhoQ activity. Furthermore, the SD pocket has also been shown to be involved in SafA-mediated PhoQ control.  相似文献   

3.
PhoQ is the transmembrane sensor kinase of the phoPQ two-component system, which detects and responds to divalent cations and antimicrobial peptides and can trigger bacterial virulence. Despite their ubiquity and importance in bacterial signaling, the structure and molecular mechanism of the sensor kinases is not fully understood. Frequently, signals are transmitted from a periplasmic domain in these proteins to the cytoplasmic kinase domains via an extended dimeric interface, and the PhoQ protein would appear to follow this paradigm. However, the isolated truncated periplasmic domain of PhoQ dimerizes poorly, so it has been difficult to distinguish the relevant interface in crystal structures of the PhoQ periplasmic domain. Thus, to determine the arrangement of the periplasmic domains of Escherichia coli PhoQ in the physiological homodimer, disulfide-scanning mutagenesis was used. Single cysteine substitutions were introduced along the N-terminal helix of the periplasmic region, and the degree of cross-linking in each protein variant was determined by Western blotting and immunodetection. The results were subjected to periodicity analysis to generate a profile that provides information concerning the Cβ distances between corresponding residues at the interface. This profile, together with a rigid-body search procedure, side-chain placement, and energy minimization, was used to build a model of the dimer arrangement. The final model proved to be highly compatible with one of the PhoQ crystal structures, 3BQ8, indicating that 3BQ8 is representative of the physiological arrangement. The model of the periplasmic region is also compatible with a full-length PhoQ protein in which a four-helix bundle forms in the membrane. The membrane four-helix bundle has been proposed for other sensor kinases and is thought to have a role in the mechanism of signal transduction; our model supports the idea that signaling through a membrane four-helix bundle is a widespread mechanism in the transmembrane sensor kinases.  相似文献   

4.
Antibodies are increasingly being used as tools to study the function of cell surface markers. Several types of responses may occur upon the selective binding of an antibody to an epitope on a receptor. Antibody binding may trigger signals that are normally transduced by endogenous ligands. Moreover, antibody binding may activate normal signals in a manner that disrupts a sequence of events that coordinates either differentiation, mitogenesis, or morphogenesis. Alternately, it is possible that binding elicits either a modified signal or no signal. This article focuses on the cascade of events that occur following specific antibody binding to myelin markers expressed by cultured murine oligodendrocytes. Binding of specific antibodies to the oligodendrocyte membrane surface markers myelin/oligodendrocyte glycoprotein (MOG), myelin/oligodendrocyte specific protein (MOSP), galactocerebroside (GalC), and sulfatide on cultured murine oligodendrocytes results in different effects with regard to phospholipid turnover, Ca2+ influxes, and antibody:marker distribution. The consequence of each antibody-elicited cascade of events appears to be the regulation of the cytoskeleton within the oligodendroglial membrane sheets. The antibody binding studies described in this article demonstrate that these myelin surface markers are capable of transducing signals. Since endogenous ligands for these myelin markers have yet to be identified, it is not known if these signals are normally transduced or are a modification of normally transduced signals.  相似文献   

5.
Two well characterized signal transduction cascades regulating fungal development and virulence are the MAP kinase and cAMP signaling cascades. Here we review the current state of knowledge on cAMP signaling cascades in fungi. While the processes regulated by cAMP signaling in fungi are as diverse as the fungi themselves, the components involved in signal transduction are remarkably conserved. Fungal cAMP signaling cascades are also quite versatile, which is apparent from the differential regulation of similar biological processes. In this review we compare and contrast cAMP signaling pathways that regulate development in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and differentiation and virulence in the human pathogen Cryptococcus neoformans and the plant pathogen Ustilago maydis. We also present examples of interaction between the cAMP and MAP kinase signaling cascades in the regulation of fungal development and virulence.  相似文献   

6.
The transmembrane aspartate receptor of bacterial chemotaxis regulates an associated kinase protein in response to both attractant binding to the receptor periplasmic domain and covalent modification of four adaptation sites on the receptor cytoplasmic domain. The existence of at least 16 covalent modification states raises the question of how many stable signaling conformations exist. In the simplest case, the receptor could have just two stable conformations ("on" and "off") yielding the two-state behavior of a toggle-switch. Alternatively, covalent modification could incrementally shift the receptor between many more than two stable conformations, thereby allowing the receptor to function as a rheostatic switch. An important distinction between these models is that the observed functional parameters of a toggle-switch receptor could strongly covary as covalent modification shifts the equilibrium between the on- and off-states, due to population-weighted averaging of the intrinsic on- and off-state parameters. By contrast, covalent modification of a rheostatic receptor would create new conformational states with completely independent parameters. To resolve the toggle-switch and rheostat models, the present study has generated all 16 homogeneous covalent modification states of the receptor adaptation sites, and has compared their effects on the attractant affinity and kinase activity of the reconstituted receptor-kinase signaling complex. This approach reveals that receptor covalent modification modulates both attractant affinity and kinase activity up to 100-fold, respectively. The regulatory effects of individual adaptation sites are not perfectly additive, indicating synergistic interactions between sites. The three adaptation sites at positions 295, 302, and 309 are more important than the site at position 491 in regulating attractant affinity and kinase activity, thereby explaining the previously observed dominance of the former three sites in in vivo studies. The most notable finding is that covalent modification of the adaptation sites alters the receptor attractant affinity and the receptor-regulated kinase activity in a highly correlated fashion, strongly supporting the toggle-switch model. Similarly, certain mutations that drive the receptor into the kinase activating state are found to have correlated effects on attractant affinity. Together these results provide strong evidence that chemotaxis receptors possess just two stable signaling conformations and that the equilibrium between these pure on- and off-states is modulated by both attractant binding and covalent adaptation. It follows that the attractant and adaptation signals drive the same conformational change between the two settings of a toggle. An approach that quantifies the fractional occupancy of the on- and off-states is illustrated.  相似文献   

7.
Chloroplastic membrane proteins can be targeted to any of three distinct membrane systems, i.e., the outer envelope membrane (OEM), inner envelope membrane (IEM), and thylakoid membrane. This complex structure of chloroplasts adds significantly to the challenge of studying protein targeting to various membrane sub-compartments within a chloroplast. In this investigation, we examined the role played by the transmembrane domain (TMD) in directing membrane proteins to either the IEM or thylakoid membrane. Using the IEM protein, Arc6 (Accumulation and Replication of Chloroplasts 6), we exchanged the stop-transfer TMD of Arc6 with various TMDs derived from different IEM and thylakoid membrane proteins and monitored the subcellular localization of these Arc6-hybrid proteins. We showed that when the Arc6 TMD was replaced with a TMD derived from various thylakoid membrane proteins, these Arc6(thylTMD) hybrid proteins could be directed to the thylakoid membrane rather than to the IEM. Conversely, when the TMD of the thylakoid membrane proteins, STN8 (State Transition protein kinase 8) or Plsp1 (Plastidic type I signal peptidase 1), was replaced with the stop-transfer TMD of Arc6, STN8 and Plsp1 were halted at the IEM. From our investigation, we conclude that the TMD plays a critical role in targeting integral membrane proteins to either the IEM or thylakoid membrane.  相似文献   

8.
Transmembrane signaling requires modular interactions between signaling proteins, phosphorylation or dephosphorylation of the interacting protein partners [1] and temporary elaboration of supramolecular structures [2], to convey the molecular information from the cell surface to the nucleus. Such signaling complexes at the plasma membrane are instrumental in translating the extracellular cues into intracellular signals for gene activation. In the most straightforward case, ligand binding promotes homodimerization of the transmembrane receptor which facilitates modular interactions between the receptor's cytoplasmic domains and intracellular signaling and adaptor proteins [3]. For example, most growth factor receptors contain a cytoplasmic protein tyrosine kinase (PTK) domain and ligand-mediated receptor dimerization leads to cross phosphorylation of tyrosines in the receptor's cytoplasmic domains, an event that initiates the signaling cascade [4]. In other signaling pathways where the receptors have no intrinsic kinase activity, intracellular non-receptor PTKs (i.e. Src family PTKs, JAKs) are recruited to the cytoplasmic domain of the engaged receptor. Execution of these initial phosphorylations and their translation into efficient cellular stimulation requires concomitant activation of diverse signaling pathways. Availability of stable, preassembled matrices at the plasma membrane would facilitate scaffolding of a large array of receptors, coreceptors, tyrosine kinases and other signaling and adapter proteins, as it is the case in signaling via the T cell antigen receptor [5]. The concept of the signaling platform [6] has gained usage to characterize the membrane structure where many different membrane-bound components need to be assembled in a coordinated manner to carry out signaling.The structural basis of the signaling platform lies in preferential assembly of certain classes of lipids into distinct physical and functional compartments within the plasma membrane [7,8]. These membrane microdomains or rafts (Figure 1) serve as privileged sites where receptors and proximal signaling molecules optimally interact [9]. In this review, we shall discuss first how signaling platforms are assembled and how receptors and their signaling machinery could be functionally linked in such structures. The second part of our review will deal with selected examples of raft-based signaling pathways in T lymphocytes and NK cells to illustrate the ways in which rafts may facilitate signaling.  相似文献   

9.
Studying the tight activity regulation of platelet-specific integrin αIIbβ3 is foundational and paramount to our understanding of integrin structure and activation. αIIbβ3 is essential for the aggregation and adhesion function of platelets in hemostasis and thrombosis. Structural and mutagenesis studies have previously revealed the critical role of αIIbβ3 transmembrane (TM) association in maintaining the inactive state. Gain-of-function TM mutations were identified and shown to destabilize the TM association leading to integrin activation. Studies using isolated TM peptides have suggested an altered membrane embedding of the β3 TM α-helix coupled with αIIbβ3 activation. However, controversies remain as to whether and how the TM α-helices change their topologies in the context of full-length integrin in native cell membrane. In this study, we utilized proline scanning mutagenesis and cysteine scanning accessibility assays to analyze the structure and function correlation of the αIIbβ3 TM domain. Our identification of loss-of-function proline mutations in the TM domain suggests the requirement of a continuous TM α-helical structure in transmitting activation signals bidirectionally across the cell membrane, characterized by the inside-out activation for ligand binding and the outside-in signaling for cell spreading. Similar results were found for αLβ2 and α5β1 TM domains, suggesting a generalizable mechanism. We also detected a topology change of β3 TM α-helix within the cell membrane, but only under conditions of cell adhesion and the absence of αIIb association. Our data demonstrate the importance of studying the structure and function of the integrin TM domain in the native cell membrane.  相似文献   

10.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.  相似文献   

11.
Oxidative crosslinking of cysteines introduced by site-specific mutagenesis is a powerful tool for structural analysis of proteins, but the approach has been limited to studies in vitro. We recently reported that intact cells of Escherichia coli could be treated with Cu(II)-(o-phenanthroline)3 or molecular iodine in a way that left unperturbed flagellar function or general chemotactic response, yet crosslinks were quantitatively formed between select cysteines in adjoining transmembrane helices of chemoreceptor Trg. This suggested that oxidative crosslinking might be utilized for structural analysis in vivo. Thus, we used our comprehensive collection of Trg derivatives, each containing a single cysteine at one of the 54 positions in the two transmembrane segments of the receptor monomer to characterize patterns of crosslinking in vivo and in vitro for this homodimeric protein. We found that in vivo crosslinking compared favorably as a technique for structural analysis with the more conventional in vitro approach. Patterns of crosslinking generated by oxidation treatments of intact cells indicated extensive interaction of transmembrane segment 1 (TM1) with its homologous partner (TM1') in the other subunit and a more distant placement of TM2 and TM2', the same relationships identified by crosslinking in isolated membranes. In addition, the same helical faces for TM1-TM1' interaction and TM2-TM2' orientation were identified in vivo and in vitro. The correspondence of the patterns also indicates that structural features identified by analysis of in vitro crosslinking are relevant to the organization of the chemoreceptor in its native environment, the intact, functional cell. It appears that the different features of the two functionally benign treatments used for in vivo oxidations can provide insights into protein dynamics.  相似文献   

12.
Clustering of membrane proteins plays an important role in many cellular activities such as protein sorting and signal transduction. In this study, we used dissipative particle dynamics simulation method to investigate the clustering of anchored membrane proteins (AMPs) in the presence of transmembrane proteins (TMPs). First, our simulation results show that clustering of AMPs and that of TMPs are in fact interdependent, and depending on their hydrophobic length, both protein mixing and protein demixing are observed. Especially, the protein demixing occurs only when the hydrophobic mismatch of TMPs is negative while that of AMPs is positive. Second, our simulation results indicate that the clustering of TMPs also modulates the coupling of the clustering of AMPs in both leaflets. On the one hand, the coupling between AMPs in different leaflets will be strongly restrained if TMPs form protein mixing with AMPs in one leaflet and protein demixing with AMPs in the other leaflet. On the other hand, the coupling between AMPs can be enhanced or mediated by TMPs when TMPs mix with AMPs in both leaflets. Our results may have some implications on our understanding of how different types of membrane proteins cluster and provide a possible explanation of how TMPs participate in signal transduction across cellular membranes.  相似文献   

13.
In oxygen-sensing PAS domains, a conserved polar residue on the proximal side of the heme cofactor, usually arginine or histidine, interacts alternately with the protein in the "on-state" or the heme edge in the "off-state" but does not contact the bound ligand directly. We assessed the contributions of this residue in Bradyrhizobium japonicum FixL by determining the effects of an R206A substitution on the heme-PAS structure, ligand affinity, and regulatory capacity. The crystal structures of the unliganded forms of the R206A and wild-type BjFixL heme-PAS domains were similar, except for a more ruffled porphyrin ring in R206A BjFixL and a relaxation of the H214 residue and heme propionate 7 due to their lost interactions. The oxygen affinity of R206A BjFixL (Kd approximately 350 microM) was 2.5 times lower than that of BjFixL, and this was due to a higher off-rate constant for the R206A variant. The enzymatic activities of the unliganded "on-state" forms, either deoxy or met-R206A BjFixL, were comparable to each other and slightly lower (twofold less) than those of the corresponding BjFixL species. The most striking difference between the two proteins was in the enzymatic activities of the liganded "off-state" forms. In particular, saturation with a regulatory ligand (the Fe(III) form with cyanide) caused a >2000-fold inhibition of the BjFixL phosphorylation of BjFixJ, but a 140-fold inhibition of this catalytic activity in R206A BjFixL. Thus, in oxygen-sensing PAS domains, the interactions of polar residues with the heme edge couple the heme-binding domain to a transmitter during signal transduction.  相似文献   

14.
The interpretation of the circular dichroism (CD) spectra of proteins to date requires additional secondary structural information of the proteins to be analyzed, such as X-ray or NMR data. Therefore, these methods are inappropriate for a CD database whose secondary structures are unknown, as in the case of the membrane proteins. The convex constraint analysis algorithm (Perczel, A., Hollósi, M., Tusnády, G., & Fasman, G. D., 1991, Protein Eng. 4, 669-679), on the other hand, operates only on a collection of spectral data to extract the common spectral components with their spectral weights. The linear combinations of these derived "pure" CD curves can reconstruct the original data set with great accuracy. For a membrane protein data set, the five-component spectra so obtained from the deconvolution consisted of two different types of alpha helices (the alpha helix in the soluble domain and the alpha T helix, for the transmembrane alpha helix), a beta-pleated sheet, a class C-like spectrum related to beta turns, and a spectrum correlated with the unordered conformation. The deconvoluted CD spectrum for the alpha T helix was characterized by a positive red-shifted band in the range 195-200 nm (+95,000 deg cm2 dmol-1), with the intensity of the negative band at 208 nm being slightly less negative than that of the 222-nm band (-50,000 and -60,000 deg cm2 dmol-1, respectively) in comparison with the regular alpha helix, with a positive band at 190 nm and two negative bands at 208 and 222 nm with magnitudes of +70,000, -30,000, and -30,000 deg cm2 dmol-1, respectively.  相似文献   

15.
本研究以禽致病性大肠杆菌(APEC)及其PhoP/Q缺失株感染雏鸡小肠为模型,以分析其免疫相关基因的表达变化为目的,采用转录组测序(RNA-Seq)技术对感染APEC及其PhoP/Q缺失株的雏鸡小肠样本RNA进行测序,分析免疫相关基因的表达变化,结果为野生株攻毒组与对照组相比、野生株攻毒组与缺失株攻毒组相比、缺失株攻毒组与对照组相比,分别筛选出131、105、172个差异表达基因(fold change≥2, FDR≤0.05),GO功能分类结果显示分别有87、99、159个基因得到注释,这些基因主要富集到氧化还原过程、脂蛋白转运、血管内皮细胞迁移、免疫反应、凋亡过程负调控、肝素结合、铁离子结合、CCR趋化因子受体结合等功能,得出APEC及其PhoP/Q缺失株感染雏鸡后引起机体肠道免疫相关基因变化的结论,根据GO功能注释筛选出PTPRC、LCP1、YFV等免疫相关基因,为深入研究雏鸡肠道免疫提供依据。  相似文献   

16.
ABSTRACT

Pancreatic cancer (PC), highly malignant, is one of the most lethal cancers. Interferon-induced transmembrane protein 1 (IFITM1) has recently been regarded as a new molecular marker in human cancers. However, the role of IFITM1 in PC remains unclear. In this study, a short hairpin RNA (shRNA) was constructed to assess the effect of IFITM1 on PANC-1 and ASPC-1 cells. The level of IFITM1 was downregulated in cells transfected with shRNA targeting IFITM1 (sh-IFITM1). Silencing of IFITM1 significantly decreased cell viability, downregulated the level of Ki-67, arrested cell at G1/S phase, reduced the number of cells in S phase, and decreased cyclinD1, cyclinE, CDK2, and CDK4 levels. Moreover, Hoechst staining and Western blotting analysis showed that cell apoptosis was induced by IFITM1. IFITM1 knockdown suppressed the MAPK signaling pathway by downregulation of p-ERK, p-P38, and p-JNK levels. These findings suggested that IFITM1 could be considered a potential therapeutic target for PC.  相似文献   

17.
Protein-protein interactions within the membrane, partially or fully mediated by transmembrane (TM) domains, are involved in many vital cellular processes. Since the unique feature of the membrane environment enables protein-protein assembly that otherwise is not energetically favored in solution, the structural restrictions involved in the assembly of soluble proteins are not necessarily valid for the assembly of TM domains. Here we used the N-terminal TM domain (Tar-1) of the Escherichia coli aspartate receptor as a model system for examining the stereospecificity of TM-TM interactions in vitro and in vivo in isolated systems, and in the context of the full receptor. For this propose, we synthesized Tar-1 all-l and all-d amino acid TM peptides, a mutant TM peptide and an unrelated TM peptide. The data revealed: (i) Tar-1 all-d specifically associated with Tar-1 all-l within a model lipid membrane, as determined by using fluorescence energy transfer experiments; (ii) Tar-1 all-l and all-d, but not the control peptides, demonstrated a dose-dependant dominant negative effect on the Tar-1 TM homodimerization in the bacterial ToxR assembly system, suggesting a wild-type-like interaction; and most interestingly, (iii) both Tar-1 all-l and all-d showed a remarkable ability to inhibit the chemotaxis response of the full-length receptor, in vivo. Peptide binding to the bacteria was confirmed through confocal imaging, and Western blotting confirmed that ToxR Tar-1 chimera protein levels are not affected by the presence of the exogenous peptides. These findings present the first evidence that an all-d TM domain peptide acts in vivo similarly to its parental all-l peptide and suggest that the dimerization of the TM domains is mainly mediated by side-chain interactions, rather than geometrically fitted conformations. In addition, the study provides a new approach for modifying the function of membrane proteins by proteolysis-free peptides.  相似文献   

18.
  1. Download : Download high-res image (208KB)
  2. Download : Download full-size image
  相似文献   

19.
Purification studies were conducted on DNA polymerase bound to the membrane fraction of E. coli HF 4704. Purified enzyme (Fraction V) required Mg2+ and showed an optimun pH of 7.2. Various kinds of salt indicated a stimulative effect at concentrations lower than 0.1 m. Fraction V was unstable at an acidic condition (pH 5.0) but was rather stable at an alkaline condition (pH 9.0). The enzyme activity was lost by incubation at 45°C for 30min but was stabilized by the addition of DNA. The enzyme contained exonuclease activity but no endonuclease activity. The enzyme produced only light density DNA of various sizes. The function of this enzyme as considered to fill single stranded region of the double stranded primer DNA.  相似文献   

20.
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号