首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetative reproduction of Chondracanthus chamissoi by means of fragmentation and re-attachment of thalli is considered an effective strategy for maintaining natural populations of this species. Here, we evaluate the effects of (1) time of drifting thallus, (2) type of substratum, and (3) photon flux density, on the re-attachment capacity of thallus fragments of C. chamissoi. The results show that re-attachment decreases with the time after detachment, and was higher at the lower photon flux densities tested (10 and 40 μmol photons m−2s−1), and on calcareous substratum. Secondary attachment discs are formed along the entire surface of the fragment.  相似文献   

2.
Biofilms formed by the green alga Trentepohlia aurea could be a useful tool in the removal of nitrate and phosphate from water. When a prepared biofilter was dampened with medium and incubated under low light intensity (10 μmol photons m−2 s−1) between 5 and 50 μmol photons m−2 s−1, the efficiency of removal of inorganic compounds from water was higher without the decomposition of chlorophylls in the cells. Algal cells immobilized on a glass fiber filter could be kept for 12 weeks under dark conditions at 4°C in the refrigerator. We tried to construct a laboratory-scale photobioreactor for the removal of inorganic nitrogen and phosphate from water by the biofilm. In this study, the synthetic wastewater was prepared by diluting 18-fold Bold’s basal medium with deionized water. The photobioreactor could efficiently remove nitrate and phosphate from the synthetic wastewater under continuous illumination. The removal ability of nitrate and phosphate per sheet of the biofilter in the photobioreactor exhibited about an 8- and 16-fold increase, respectively, in 3 days, compared with the bath experimental results. This study showed that the cycling of wastewater in the reactor by the pump led to a significant improvement in the efficiency of the inorganic ion uptake from water.  相似文献   

3.
Symbiotic dinoflagellates of the species Amphidinium are expected to be pharmaceutically useful microalgae because they produce antitumor macrolides. A microalgae production system with a large number of cells at a high density has been developed for the efficient production of macrolide compounds. In the present study, the effects of culture conditions on the cellular growth rate of dinoflagellates were investigated to determine the optimum culture conditions for obtaining high yields of microalgae. Amphidinium species was cultured under conditions with six temperature levels (21–35°C), six levels of photosynthetic photon flux density (15–70 μmol photons m−2 s−1), three levels of CO2 concentration (0.02–0.1%), and three levels of O2 concentration (0.2–21%). The number of cells cultured in a certain volume of solution was monitored microscopically and the cellular growth rate was expressed as the specific growth rate. The maximum specific growth rate was 0.022 h−1 at a temperature of 26°C and O2 concentration of 5%, and the specific growth rate was saturated at a CO2 concentration of 0.05%, a photosynthetic photon flux density of 35 μmol photons m−2 s−1 and a photoperiod of 12 h day−1 upon increasing each environmental parameter. The results demonstrate that Amphidinium species can multiply efficiently under conditions of relatively low light intensity and low O2 concentration.  相似文献   

4.
Hizikia fusiformis thalli experience dynamic incident light conditions during the period of growth. The present study was designed to examine how changing photon irradiance affects the photosynthesis both in the short and long terms by culturing H. fusiformis under three different light levels: 35 μmol photons m-2 s-1 (low light, LL), 85 μmol photons m-2 s-1 (intermediate light, IL), and 165 μmol photons m-2 s-1 (high light, HL). A similar relative growth rate was observed between IL- and HL-grown algae, but the growth rate was significantly reduced in LL-grown algae. The photosynthetic rates (P n) measured at their respective growth light levels were found to be lowest in the thalli grown at LL and highest at HL. However, LL-grown algae exhibited much higher P n in comparison with IL- and the HL-grown thalli at the same measuring photosynthetic photon flux density, indicating the photosynthetic acclimation to low growth light in H. fusiformis. The photosynthesis–light curves showed that LL-grown algae had a highest light-saturating maximum P n (P max) in comparison with IL- or HL-grown algae when the photosynthetic rates were expressed on the biomass basis. However, P max was highest in HL-grown algae compared to IL- or LL-grown algae when the rates were normalized to chlorophyll a. The photosynthesis–inorganic carbon (Ci) response curves were also significantly affected by the growth light conditions. The highest value of apparent photosynthetic conductance occurred in LL-grown algae while the lowest value in HL-grown algae. Additionally, the activity of external carbonic anhydrase (CA) tended to increase while the total CA activity inclined to decrease in H. fusiformis thalli when the growth light level altered from 35 to 165 μmol photons per square meter per second. The external CA inhibitors showed a higher inhibition in HL-grown algae compared with LL-grown algae. It was proposed that photosynthetic acclimation to low light condition in H. fusiformis was achieved through an increase in the number of reaction centers and increased capacities of electron transport and of Ci transport within cells. The ability of photosynthetic acclimation to low light confers H. fusiformis thalli to overcome the environmental low light condition as a result of the attenuation of seawater or self-shading through enhancing its photosynthetic performance and carbon assimilation necessary for growth.  相似文献   

5.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

6.
Eco-physiological responses of nitrogen-fixing cyanobacteria to light   总被引:1,自引:0,他引:1  
The eco-physiological responses of three nitrogen-fixing cyanobacteria (N-fixing cyanobacteria), Aphanizomenon gracile, Anabaena minderi, and Ana. torques-reginae, to light were assessed under nutrient saturation. The N-fixing cyanobacteria were isolated into monocultures from a natural bloom in a shallow colored lake and their growth irradiance parameters and pigment composition were assessed. The different ecological traits related to light use (μmax, α, I k) suggest that these N-fixing cyanobacteria are well adapted to low light conditions at sufficient nutrients, yet interspecific differences were observed. Aphanizomenon gracile and Anabaena minderi had high relative growth rates at low irradiances (ca. 70% of those in high light), low half saturation constant for light-limited growth (I k < 9.09 μmol photon m−2 s−1) and high efficiency (α < 0.11 day−1 μmol photon−1 m2 s). Conversely, Ana. torques-reginae showed poorer light competitiveness: low relative growth rates at low irradiances (ca. 40% of those in high light), low α (0.009 day−1 μmol photon−1 m2 s) and higher I k (35.5 μmol photon m−2 s−1). Final densities in Aphanizomenon gracile and Anabaena minderi reached bloom densities at irradiances above 30 μmol photon m−2 s−1 with different hierarchy depending on irradiance, whereas Ana. torques-reginae never achieved bloom densities. All species had very low densities at irradiances ≤17 μmol photon m−2 s−1, thus no N-fixing blooms would be expected at these irradiances. Also, under prolonged darkness and at lowest irradiance (0 and 3 μmol photon m−2 s−1) akinetes were degraded, suggesting that in ecosystems with permanently dark sediments, the prevalence of N-fixing cyanobacteria should not be favored. All species displayed peaks of phycocyanin, but no phycoeritrin, probably due to the prevailing red light in the ecosystem from which they were isolated.  相似文献   

7.
Morphology and culture studies on germlings of Sargassum thunbergii (Mertens et Roth) Kuntze were carried out under controlled laboratory conditions. Growth characteristics of these germlings grown under different temperatures (from 10 to 25°C), irradiances (from 9 to 88 μmol photons m−2 s−1), and under blue and white light conditions are described. The development of embryonic germlings follows the classic “8 nuclei 1 egg” type described for Sargassaceae. Fertilized eggs spent 5–6 h developing into multicellular germlings with abundant rhizoids after fertilization. Under conditions of 20°C, 44 μmol photons m−2 s−1 and photoperiod of 12 h, young germlings with one or two leaflets reached 2–3 mm in length after 8 weeks. Temperature variations (10, 15, 20, 25°C) under 88 μmol photons m−2 s−1 significantly influenced the growth rate within the first week, although this effect became less obvious after 8 weeks, especially at 15 and 20°C. Variation in germling growth was highly significant under different irradiances (9, 18, 44, 88 μmol photons m−2 s−1) at 25°C. Low temperature (10°C) reduced germling growth. Growth of germlings cultured under blue light was lower than in white light. Optimal growth of these germlings occurred at 25°C and 44 μmol photons m−2 s−1.  相似文献   

8.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

9.
Summary Gossypium hirsutum L. var. Delta Pine 61 was cultivated in controlled-environment chambers at 1000–1100 mol photosynthetically active photons m-2 s-1 (medium photon flux density) and at 1800–2000 mol photons m-2 s-1 (high photon flux density), respectively. Air temperatures ranged from 20° to 34°C during 12-h light periods, whereas during dark periods temperature was 25° C in all experiments. As the leaf temperature decreased from about 33° to 27° C, marked reductions in dry matter production, leaf chlorophyll content and photosynthetic capacity occurred in plants growing under high light conditions, to values far below those in plants growing at 27° C and medium photon flux densities. The results show that slightly suboptimum temperatures, well above the so-called chilling range (0–12° C), greatly reduce dry matter production in cotton when combined with high photon flux densities equivalent to full sunlight.Abbreviations DW dry weight - F v variable fluorescence yield - F M maximum fluorescence yield - PFD photon flux density (400–700 nm)  相似文献   

10.
The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combination for growth of H. pluvialis, but there has been a great deal of disagreement between laboratories. “Ideal” levels of temperature and irradiance have been reported to range from 14 to 28°C and 30 to 200 μmol photons m−2 s−1. The objective of the present study was to simultaneously explore temperature and irradiance effects for a single strain of H. pluvialis (UTEX 2505) across an experimental region that encompassed the reported “optimal” combinations of these factors for multiple strains. To this end, a two-dimensional experimental design based on response surface methodology (RSM) was created. Maximum growth rates for UTEX 2505 were achieved at 27°C and 260 μmol photons m−2 s−1, while maximum quantum yield for stable charge separation at PSII (Fv/Fm) was achieved at 27°C and 80 μmol photons m−2 s−1. Maximum pigment concentrations correlated closely with maximum Fv/Fm. Numeric optimization of growth rate and Fv/Fm produced an optimal combination of 27°C and 250 μmol photons m−2 s−1. Polynomial models of the various response surfaces were validated with multiple points and were found to be very useful for predicting several H. pluvialis UTEX 2505 responses across the entire two-dimensional experimental design space.  相似文献   

11.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

12.
The effects of UVB radiation on the growth of macroalgal thalli were evaluated using tetrasporophytic fronds of the Rhodophytes Gigartina skottsbergii, Sarcothalia crispata and Mazzaella laminarioides. The tetrasporophytic fronds were collected from nature and the tetrasporophyte sporelings grown in a temperature regulated chamber at 8 ± 2 C with a 12L:12D (Light: Dark) photoperiod, Photosynthetically Active Radiation (PAR) of 55 μmol photons m−2 s−1 and seawater enriched with 20 mL L−1 of Provasoli medium. We exposed the thalli of these macroalgae to PAR (55 μmol photons m−2 s−1) and three treatments using a combination of PAR with three different levels of UVB radiation (0.10, 0.15 and 0.23 W m−2 for G. skottsbergii and S. crispata and 0.02, 0.05 and 0.10 W m−2 for M. laminarioides) during a period of 71 days. Growth of thalli was quantified by measuring their length using digitized photographs of samples.Important differences were detected in the growth of individuals cultured under the effects of UVB radiation, when compared to the control (i.e. plants exposed to PAR only). In the case of G. skottsbergii and S. crispata higher levels of UVB radiation resulted in slower growth of thalli. In nearly all measurements for the first two species, UVB radiation levels of 0.1 W m−2 induced differences in thallus growth, while for M. laminarioides levels of UVB radiation of 0.1 W m−2 were effective only after a prolonged period of exposure.Differential effects of UVB radiation on G. skottsbergii, S. crispata and M. laminarioides could interfere with the natural populations of these economically important macroalgal species in southern Chile, where they occur under the annual influence of the Antarctic Ozone Hole and the general thinning of the ozone layer.  相似文献   

13.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

14.
The effects of light and nitrogen deficiency on biomass, fatty acid content and composition were studied in Parietochloris incisa, the unicellular freshwater chlorophyte accumulating very high amounts of arachidonic-acid-rich triacylglycerols. P. incisa cultures grown on complete nutrient medium and under high light (400 μmol photons m− 2 s−1) showed the highest rate of growth in comparison to medium (200 μmol photons m−2 s−1) and low (35 μmol photons m−2 s−1) light intensity. Cultures grown under high light (on complete BG-11 medium) attained higher volumetric contents of total fatty acids and arachidonic acid due to greater increase in biomass. Nitrogen starvation brought about a strong increase in the arachidonic acid proportion of total fatty acids. Thus, adjustments to cultivation conditions could serve as an efficient tool for manipulation of yield and relative content of arachidonic acid in P. incisa. The significance of the changes in lipid metabolism for adaptation of P. incisa to high-light stress and nitrogen deficiency is also discussed.  相似文献   

15.
In integrated multi-trophic aquaculture (IMTA), seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents in coastal ecosystems. To establish such bioremediation systems, selection of suitable seaweed species is important. The distribution and productivity of seaweeds vary seasonally based on water temperature and photoperiod. In Korea, candidate genera such as Pophyra, Laminaria, and Undaria grow from autumn to spring. In contrast, Codium grows well at relatively high water temperatures in summer. Thus, aquaculture systems potentially could capitalize on Codium’s capacity for rapid growth in the warm temperatures of late summer and early fall. In this study, we investigated ammonium uptake and removal efficiency by Codium fragile. In laboratory experiments, we grew C. fragile under various water temperatures (10, 15, 20, and 25°C), irradiances (dark, 10, and 100 μmol photons m−2 s−1), and initial ammonium concentrations (150 and 300 μM); in all cases, C. fragile exhausted the ammonium supply for 6 h. At 150 μM of , ammonium removal efficiency was greatest (99.5 ± 2.6%) when C. fragile was incubated at 20°C under 100 μmol photons m−2 s−1. At 300 μM of , removal efficiency was greatest (86.3 ± 2.1%) at 25°C under 100 μmol photons m−2 s−1. Ammonium removal efficiency was significantly greater at 20 and 25°C under irradiance of 100 μmol photons m−2 s−1 than under other conditions tested.  相似文献   

16.
The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.  相似文献   

17.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

18.
The life-cycle of Scinaia interrupta (A.P. de Candolle) M. J. Wynne was investigated in vitro using four irradiance regimes: 4, 8, 12 and 16 μmol photons m−2 s−1. A triphasic heteromorphic life-cycle was observed. Carpospores released by cystocarps of gametophytes collected in the field developed into filamentous tetrasporophytes, which produced tetrahedral tetrasporangia. Tetrasporangial development was accelerated under higher irradiance levels. Tetraspores germinated into filamentous protonemal gametophytes, initially identical to the tetrasporophyte. Filamentous gametophytes developed apical utricles and gave rise directly to the fleshy gametophyte. Further development of the fleshy gametophyte was not observed at the lowest irradiance regime (4 μmol photons m−2 s−1). The present study reports for the first time the influence of the irradiance regime on the initial tetrasporangial development and in the development of the fleshy gametophyte, and reinforces the importance of light intensity on Scinaia life-cycle. Production of apical utricles by the filamentous gametophyte is newly reported for the genus.  相似文献   

19.
Carbon dioxide compensation concentration,Г, net photosynthetic rate,Pn, and photorespiration rate,Rl, were measured in young, adult and old primary leaves ofPhaseolus vulgaris L. over a range of photon flux densities using a closed system with IRGA. Irrespective of leaf age,Г decreased rapidly with rising photon flux density up toca. 260 (μmol m−2 s−1. From this valueГ did not change with photon flux density under constant temperature, reaching on the average 178, 118 and 239 mg m−3 in young, adult and old leaves, respectively. Changes with age in curves relatingPn andRl to photon flux density were found.  相似文献   

20.
An infiltration community was the dominating ice algal community in pack-ice off Queen Maud Land, Southern Ocean, in January 1993. The community was dominated by autotrophic processes, and the most common species were the prymnesiophyte Phaeocystis antarctica and the diatoms Chaetoceros neglectus and Fragilariopsis cylindrus. The concentration of chlorophyll a was 1.3–47.9 μg l−1, and the inner part of the community was nitrate depleted. Uptake rates of nitrate, nitrite, ammonium, urea and amino acids were measured using 15N. Nitrate was the major nitrogen source for ice algal growth (67 ± 6% nitrate uptake). It is suggested that % nitrate uptake in the infiltration community decreases during the growth season, from 92% during spring (literature data) to 67% during summer. Scalar irradiance in the infiltration community was high and variable. It reached ca. 2000 μmol m−2 s−1 at some locations, and nitrate uptake rate was potentially photoinhibited at irradiances >500 μmol m−2 s−1. Nitrate uptake rate in an average infiltration community (0.6 m of snow cover) was lowered by 13% over a 2-week period due to photoinhibition. Received: 16 December 1996 / Accepted: 5 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号