首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Calmodulin is phosphorylated in vivo and in vitro by protein kinase CK2 in a manner that is unique among CK2 substrates for being inhibited by the regulatory beta-subunit of the kinase and dramatically enhanced by polybasic peptides. Using synthetic fragments of calmodulin variably encompassing the CK2 phosphorylation sites here we show that individual phosphorylation of Thr79, Ser81, Ser101, and Thr117 is critically influenced by the size and composition of the peptides and that the C-terminal domain of calmodulin is implicated both in down-regulation of calmodulin phosphorylation by the beta-subunit and in its abnormal responsiveness to polylysine. A far-Western blot analysis discloses polylysine-dependent interaction between calmodulin and the N-terminal domain of the beta-subunit. We also show that phosphorylation of Ser81 hampers subsequent phosphorylation of Thr79 and by itself promotes the unfolding of the central helix, whose flexibility is instrumental to the interaction with calmodulin-dependent enzymes. Collectively taken, our data are consistent with a multifaceted regulation of calmodulin phosphorylation through the concerted action of distinct CaM domains, the catalytic and regulatory subunits of CK2, and polycationic effectors mimicking in vivo the effect of polylysine.  相似文献   

2.
Protein kinase CK2 (formerly casein kinase II), an enzyme that participates in a wide variety of cellular processes, has traditionally been classified as a stable tetrameric complex consisting of two catalytic CK2alpha or CK2alpha' subunits and two regulatory CK2beta subunits. While consideration of CK2 as a tetrameric complex remains relevant, significant evidence has emerged to challenge the view that its individual subunits exist exclusively within these complexes. This review will summarize biochemical and genetic evidence indicating that the regulatory CK2beta subunit exists and performs functions independently of CK2 tetramers. For example, unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumors. Furthermore, localization studies including live cell imaging have demonstrated that while the catalytic and regulatory subunits of CK2 exhibit extensive co-localization, independent mobility of the individual CK2 subunits can also be observed within cells. Identification of proteins that interact with CK2beta in the absence of catalytic CK2 subunits reinforces the notion that CK2beta has functions distinct from CK2 and begins to offer insights into these CK2-independent functions. In this respect, the discovery that CK2beta can interact with and modulate the activity of a number of other serine/threonine protein kinases including A-Raf, c-Mos and Chk1 is particularly striking. This review will discuss the interactions between CK2beta and these protein kinases with special emphasis on the properties of CK2beta that mediate these interactions and on the implications of these interactions in yielding new prospects for elucidation of the cellular functions of CK2beta.  相似文献   

3.
Protein kinase CK2 is a ubiquitous serine/threonine kinase which is involved in many proliferation-related processes in the cell. It is composed of two regulatory beta-subunits and two catalytic alpha-subunits. Its regulation still remains mysterious in spite of many years of intense research. One of its regulators is the cdk inhibitory molecule p21(WAF1)-a protein which is expressed in situations of genotoxic stress. p21(WAF1) binds to the beta-subunit of CK2 and inhibits the activity of CK2. Using deletion mutants of CK2 beta as well as a peptide library consisting of 15-amino-acid-long peptides derived from the polypeptide chain of CK2 beta we mapped the binding region for p21(WAF1) on the polypeptide chain of CK2 beta. We localized an amino-terminal and a carboxy-terminal binding domain. Binding of p21(WAF1) to both regions of the CK2 beta-subunit interferes with the phosphotransferase activity of the CK2 holoenzyme.  相似文献   

4.
The growth suppressor protein p53 plays a main part in cellular growth control. Two of its key functions are sequence specific DNA binding and transactivation. Functions of p53 in growth control are regulated at least in part by its interaction with protein kinases. p53 binds to protein kinase CK2, formerly known as casein kinase 2, and it is phosphorylated by this enzyme. CK2 is composed of two regulating beta-subunits and two catalytic alpha- or alpha'-subunits and the interaction with p53 is mediated by the regulatory beta-subunit of CK2. Recently we showed that the beta-subunit could inhibit the sequence specific DNA binding activity of p53 in vitro. Based on this finding, we asked if a coexpression of the beta-subunit of CK2 with p53 in mammalian cells could inhibit the DNA binding activity of p53 in a physiological context. We found that the coexpression of the beta-subunit showed the same inhibitory effect as in the previous assays with purified proteins. Then, we investigated the effects of the coexpression of the beta-subunit of CK2 on the transactivation and transrepression activity of p53. We found that transactivation of the mdm2, p21(WAF1/CIP1) and cyclin G promoter was inhibited in three different cell lines whereas transactivation of the bax promoter was not affected in COS1 cells but down-regulated in MCO1 and SaosS138V21 cells. p53 mediated transrepression of the fos promoter was not influenced by coexpression of the CK2 beta-subunit. Taken together we propose a cell type dependent fine regulation of the p53 transactivation function by the CK2 beta-subunit in vivo, which does not affect p53 mediated transrepression.  相似文献   

5.
The HIV-1 Rev transactivator is phosphorylated in vitro by protein kinase CK2 at two residues, Ser-5 and Ser-8; these sites are also phosphorylated in vivo. Here we show that the mechanism by which CK2 phosphorylates Rev is unique in several respects, notably: (i) it is fully dependent on the regulatory, beta-subunit of CK2; (ii) it relies on the integrity of an acidic stretch of CK2 beta which down-regulates the phosphorylation of other substrates; (iii) it is inhibited in a dose-dependent manner by polyamines and other polycationic effectors that normally stimulate CK2 activity. In contrast, a peptide corresponding to the amino-terminal 26 amino acids of Rev, including the phosphoacceptor site, is readily phosphorylated by the catalytic subunit of CK2 even in the absence of the beta-subunit. These data, in conjunction with the observation that two functionally inactive derivatives of Rev with mutations in its helix-loop-helix motif are refractory to phosphorylation, indicate the phosphorylation of Rev by CK2 relies on conformational features of distinct regions that are also required for the transactivator's biological activity.  相似文献   

6.
Fibroblast growth factor-1 (FGF-1) has both extra- and intracellular functions. To identify intracellular binding partners for FGF-1, we isolated proteins from U2OS human osteosarcoma cells interacting specifically with FGF-1. One of the isolated proteins was identified as protein kinase CK2 (CK2). We here provide evidence that FGF-1 binds to both the catalytic alpha-subunit and to the regulatory beta-subunit of CK2. The interaction between FGF-1 and CK2 alpha and beta was characterized by surface plasmon resonance, giving K(D) values of 0.4 +/- 0.3 and 1.2 +/- 0.2 microM, respectively. By using a novel assay for intracellular protein interaction, FGF-1 and CK2 alpha are shown to interact in vivo. In vitro, FGF-1 and FGF-2 are phosphorylated by CK2, and the presence of FGF-1 or FGF-2 was found to enhance the autophosphorylation of CK2 beta. A correlation between the mitogenic potential of FGF-1 mutants and their ability to bind to CK2 alpha was observed. The possible involvement of CK2 in the FGF-induced stimulation of DNA synthesis is discussed.  相似文献   

7.
Specific binding of protein kinase CK2 catalytic subunits to tubulin   总被引:2,自引:0,他引:2  
Protein kinase CK2 is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. To analyse these subunits individually we generated antibodies against unique peptides derived from the alpha-, alpha'- and beta-subunit. Immunofluorescence studies with these antibodies revealed the presence of all three CK2 subunits in the cytoplasm and weakly in the nucleus with strong signals around the nuclear membrane. Double staining experiments revealed a co-localisation of all three subunits with tubulin. A direct association between the CK2 alpha- and the alpha'-subunit and tubulin was confirmed by co-immunoprecipitation experiments as well as by Far Western analysis. There was no binding of the CK2 beta-subunit to tubulin. Thus, with tubulin we have identified a new binding partner specific for the catalytic subunits of CK2.  相似文献   

8.
The catalytic (alpha) subunit of protein kinase CK2 and the hematopoietic specific protein 1 (HS1) display opposite effects on Ha-ras induced fibroblast transformation, by enhancing and counteracting it, respectively. Here we show the occurrence of physical association between HS1 and CK2alpha as judged from both far Western blot and plasmon resonance (BIAcore) analysis. Association of HS1 with CK2alpha is drastically reduced by the deletion of the HS1 C-terminal region (403-486) containing an SH3 domain. HS1, but not its deletion mutant HS1 Delta324-393, lacking a sequence similar to an acidic stretch of the regulatory beta-subunit of CK2, inhibits calmodulin phosphorylation by CK2alpha. These data indicate that HS1 physically interacts with CK2alpha and down-regulates its activity by a mechanism similar to the beta-subunit.  相似文献   

9.
Sarno S  Marin O  Boschetti M  Pagano MA  Meggio F  Pinna LA 《Biochemistry》2000,39(40):12324-12329
Protein kinase CK2 ("casein kinase 2") holoenzyme is composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits. A truncated form of the beta-subunit lacking its C-terminal region (betaDelta171-215) has lost the ability to stably associate with the catalytic subunits and to display a number of properties which are mediated by structural elements still present in its sequence, notably down-regulation of catalytic activity, autophosphorylation, and responsiveness to polycationic effectors. All these functions are restored by simultaneous addition of a synthetic peptide reproducing the deleted fragment, beta170-215, which is able to associate with the catalytic subunits and to stimulate catalytic activity. This peptide includes a segment displaying significant sequence similarity with a region of cyclin A which interacts with the PSTAIRE motif of CDK2 eliciting its catalytic activity. A peptide reproducing this sequence (beta181-203), but not its derivative in which three nonpolar side chains have been replaced by polar ones, interacts with the alpha-subunit and stimulates its catalytic activity; it also partially restores the ability of truncated betaDelta171-215 to autophosphorylate. These data disclose the essential role of a structural module located between residues 181 and 203 in conferring regulatory properties to the beta-subunit of CK2.  相似文献   

10.
Protein kinase CK2 is a tetrameric enzyme composed of two catalytic (alpha and/or alpha') subunits and two regulatory (beta) subunits. Because CK2beta is synthesized in excess of CK2alpha, we hypothesized that formation of CK2beta homodimers precedes the incorporation of the catalytic subunits of CK2 into complexes. To test this hypothesis, we cotransfected cells with two epitope-tagged variants of CK2beta. The results of these cotransfection studies demonstrate that interactions between two CK2beta subunits take place in the absence of CK2alpha. Together with results from previous biosynthetic labeling studies, these results suggest that formation of CK2beta homodimers occurs before incorporation of catalytic subunits of CK2 into CK2 complexes. We also cotransfected Cos-7 cells with a deletion fragment of CK2beta (i.e. Myc-beta1-166) together with full-length hemagglutinin (HA)-tagged CK2beta and/or CK2alpha'. Although complexes between Myc-beta1-166 and HA-beta were readily detected, we obtained no evidence of direct interactions between Myc-beta1-166 and HA-CK2alpha'. These results suggest that residues within the N-terminal 166 amino acids of CK2beta are sufficient for interactions between CK2beta subunits, whereas the C-terminal domain of CK2beta is required for complex formation with the catalytic subunits of CK2. Finally, we observed that expression of full-length HA-beta promotes phosphorylation of Myc-beta1-166 by HA-CK2alpha'.  相似文献   

11.
Biochemical and crystallographic data suggest that, in contrast with other organisms, the active maize protein kinase CK2 might be composed simply of a catalytic polypeptide (CK2alpha), thus lacking CK2beta regulatory subunits. To investigate the existence and functionality of CK2beta regulatory subunits in Zea mays, we have screened a maize cDNA library using different approaches and have isolated three full-length cDNAs encoding CK2beta regulatory subunits (CK2beta-1, CK2beta-2 and CK2beta-3) and a cDNA coding for a novel CK2alpha catalytic subunit, CK2alpha-3. The pattern of expression of all these alpha/beta subunits has been studied in different organs and developmental stages using specific probes for each isoform, and indicates that while CK2alpha subunits are constitutive, CK2beta subunits are expressed differentially during embryo development. The yeast two-hybrid system and pull-down assays have been used to study specific interactions between the different subunits. While CK2alpha subunits are unable to self-associate, preferential interactions between alpha/beta isoforms and beta/beta isoforms can be predicted. Furthermore, we show that maize CK2alpha/beta subunits assemble into a structural tetrameric complex which has very similar properties to those described in other organisms, and that expression of maize CK2beta subunits in yeast allows the rescue of the phenotypic defects associated to the lack of CK2 function, thus demonstrating the functionality of maize CK2beta regulatory subunits.  相似文献   

12.
13.
To assess the functional role of the four conserved cysteinyl residues in the regulatory beta-subunit of protein kinase CK2, the effect of pCMB and other reagents of sulfhydryl groups has been investigated. The pCMB-treated beta-subunit has lost its ability to form either homodimers or regular alpha(2)beta(2) heterotetramers with the catalytic subunit. It also fails to increase catalytic activity toward peptide substrates and to mediate the stimulatory effect of polylysine. The pCMB-treated beta-subunit, however, is still able to prevent calmodulin phosphorylation and to physically interact with the alpha-subunit to form inactive complexes whose sedimentation coefficient is lower than that of CK2 holoenzyme. These inactive complexes upon treatment with reducing agents like DTT are converted into a fully active heterotetrameric holoenzyme.  相似文献   

14.
15.
The growth suppressor protein p53 and the protein kinase CK2 are both implicated in cellular growth regulation. We previously found that p53 binds to protein kinase CK2 via its regulatory beta-subunit. In the present study, we analyzed the consequences of the binding of p53 to CK2 for the enzymatic activity of CK2 in vitro and in vivo. We found that the carboxy-terminus of p53 which is a potent transforming agent stimulated CK2 activity whereas full length wild-type p53 which is a growth suppressor inhibited the activity of protein kinase CK2. Inhibition of protein kinase CK2 by p53 was dose-dependent and was seen for various CK2 substrates. Experiments with heat-denatured p53 and the conformational mutant p53(R175H) revealed that an intact conformation of p53 seemed to be necessary. Transfection of wild-type and of mutant p53 into p53-/- cells showed that the inhibition of p53 on CK2 activity was also detectable in intact cells and specific for wild-type p53 indicating that the growth suppressing function of p53 might at least be partially achieved by down-regulation of protein kinase CK2.  相似文献   

16.
Protein kinase CK2 is a multifunctional enzyme which has long been described as a stable heterotetrameric complex resulting from the association of two catalytic (alpha or alpha') and two regulatory (beta) subunits. To track the spatiotemporal dynamics of CK2 in living cells, we fused its catalytic alpha and regulatory beta subunits with green fluorescent protein (GFP). Both CK2 subunits contain nuclear localization domains that target them independently to the nucleus. Imaging of stable cell lines expressing low levels of GFP-CK2alpha or GFP-CK2beta revealed the existence of CK2 subunit subpopulations exhibiting differential dynamics. Once in the nucleus, they diffuse randomly at different rates. Unlike CK2beta, CK2alpha can shuttle, showing the dynamic nature of the nucleocytoplasmic trafficking of the kinase. When microinjected in the cytoplasm, the isolated CK2 subunits are rapidly translocated into the nucleus, whereas the holoenzyme complex remains in this cell compartment, suggesting an intramolecular masking of the nuclear localization sequences that suppresses nuclear accumulation. However, binding of FGF-2 to the holoenzyme triggers its nuclear translocation. Since the substrate specificity of CK2alpha is dramatically changed by its association with CK2beta, the control of the nucleocytoplasmic distribution of each subunit may represent a unique potential regulatory mechanism for CK2 activity.  相似文献   

17.
Protein kinase CK2 is an inhibitor of the neuronal Cdk5 kinase   总被引:1,自引:0,他引:1  
The complex of Cdk5 and its neuronal activator p35 is a proline-directed Ser/Thr kinase that plays an important role in various neuronal functions. Deregulation of the Cdk5 enzymatic activity was found to associate with a number of neurodegenerative diseases. To search for regulatory factors of Cdk5-p35 in the brain, we developed biochemical affinity isolation using a recombinant protein comprising the N-terminal 149 amino acids of p35. The catalytic alpha-subunit of protein kinase CK2 (formerly known as casein kinase 2) was identified by mass spectrometry from the isolation. The association of CK2 with p35 and Cdk5 was demonstrated, and the CK2-binding sites were delineated in p35. Furthermore, CK2 displayed strong inhibition toward the Cdk5 activation by p35. The Cdk5 inhibition is dissociated from the kinase function of CK2 because the kinase-dead mutant of CK2 displayed the similar Cdk5 inhibitory activity as the wild-type enzyme. Further characterization showed that CK2 blocks the complex formation of Cdk5 and p35. Together, these findings suggest that CK2 acts as an inhibitor of Cdk5 in the brain.  相似文献   

18.
19.
The regulatory subunit of protein kinase CK2, designated CK2beta, exists both free in cells and in complexes with the CK2 catalytic subunits. Growing evidence suggests that CK2beta has functions dependent and independent of the CK2 catalytic subunits. There have been indications that CK2beta has functions associated with DNA damage responses and in the control of cell proliferation. For example, transient and stable constitutive overexpression of CK2beta in mammalian cells was previously shown to perturb cell cycle progression and to attenuate proliferation. To systematically investigate the molecular mechanisms responsible for these effects of CK2beta on cell proliferation, we generated human osteosarcoma U2OS cell lines with tetracycline-regulated expression of CK2beta. Increased expression of CK2beta results in increases in total cellular CK2 activity, but no changes in cell cycle profiles or proliferation. Furthermore, following exposure to ultraviolet radiation, p53 induction was identical regardless of the levels of CK2beta in cells. Mouse 3T3-L1 cells stably transfected with CK2beta also showed no alterations in cell proliferation. The differences between these results and those previously reported emphasize the complex nature of CK2beta and its cellular functions. Furthermore, these results indicate that increased expression of CK2beta is not by itself sufficient to effect alterations in cell proliferation.  相似文献   

20.
To shed light on the paradoxical behaviour of calmodulin, whose phosphorylation is inhibited by the regulatory beta-subunit of protein kinase CK2, a series of peptides encompassing the phosphoacceptor sites of calmodulin have been synthesized and assayed as substrates of CK2 alpha-subunit either alone or combined with the beta-subunit. The shortest peptide whose phosphorylation is reduced instead of being enhanced by the beta-subunit encompasses the sequence 68-106, including the central helix and the Ca2+-binding loop-III. In contrast, the phosphorylation of a peptide encompassing loop II and the central helix (54-92) is stimulated, like that of several shorter peptides, by the beta-subunit. Our data localize to the C-terminal domain of calmodulin the structural elements that are responsible for inverted susceptibility to beta-subunit regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号