首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
VEGF mediates commissural axon chemoattraction through its receptor Flk1   总被引:3,自引:0,他引:3  
Growing axons are guided to their targets by attractive and repulsive cues. In the developing spinal cord, Netrin-1 and Shh guide commissural axons toward the midline. However, the combined inhibition of their activity in commissural axon turning assays does not completely abrogate turning toward floor plate tissue, suggesting that additional guidance cues are present. Here we show that the prototypic angiogenic factor VEGF is secreted by the floor plate and is a chemoattractant for commissural axons in vitro and in vivo. Inactivation of Vegf in the floor plate or of its receptor Flk1 in commissural neurons causes axon guidance defects, whereas Flk1 blockade inhibits turning of axons to VEGF in vitro. Similar to Shh and Netrin-1, VEGF-mediated commissural axon guidance requires the activity of Src family kinases. Our results identify VEGF and Flk1 as a novel ligand/receptor pair controlling commissural axon guidance.  相似文献   

2.
Developing axons are guided to their targets by molecular cues in their local environment. Some cues are short-range, deriving from cells along axonal pathways. There is also increasing evidence for longer-range guidance cues, in the form of gradients of diffusible chemoattractant molecules, which originate from restricted populations of target cells. The guidance of developing commissural axons within the spinal cord depends on one of their intermediate cellular targets, the floor plate. We have shown previously that floor plate cells secrete a diffusible factor(s) that can alter the direction of commissural axon growth in vitro. Here we show that the factor is an effective chemoattractant for commissural axons. It can diffuse considerable distances through a collagen gel matrix and through dorsal and ventral neural epithelium in vitro to reorient the growth of virtually all commissural axons. The orientation of axons occurs in the absence of detectable effects on the survival of commissural neurons or on the rate of commissural axon extension. The regionally restricted expression of the factor suggests that it is present in the embryonic spinal cord in a gradient with its high point at the floor plate. These observations support the idea that the guidance of commissural axons to the ventral midline of the spinal cord results in part from the secretion of a chemoattractant by the floor plate.  相似文献   

3.
During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.  相似文献   

4.
BMPs as mediators of roof plate repulsion of commissural neurons   总被引:1,自引:0,他引:1  
During spinal cord development, commissural (C) neurons, located near the dorsal midline, send axons ventrally and across the floor plate (FP). The trajectory of these axons toward the FP is guided in part by netrins. The mechanisms that guide the early phase of C axon extension, however, have not been resolved. We show that the roof plate (RP) expresses a diffusible activity that repels C axons and orients their growth within the dorsal spinal cord. Bone morphogenetic proteins (BMPs) appear to act as RP-derived chemorepellents that guide the early trajectory of the axons of C neurons in the developing spinal cord: BMP7 mimics the RP repellent activity for C axons in vitro, can act directly to collapse C growth cones, and appears to serve an essential function in RP repulsion of C axons.  相似文献   

5.
The floor plate of the embryonic rat spinal cord has been proposed to act as an intermediate target that plays a role in the pattern of extension of commissural axons. To begin to examine the role of the floor plate in axon guidance at the midline, we have studied the precision of the commissural axon projection to and across the floor plate during development. To delineate the pathway, the fluorescent carbocyanine dye, Di-I, has been used as a probe. We show that commissural axons traverse the floor plate and turn rostrally at its contralateral border with remarkable precision. Axons were not observed to turn ipsilaterally and turned only upon reaching the contralateral edge of the floor plate. Virtually all commissural axons follow this route. The morphology of commissural growth cones was also examined. As they encountered the floor plate, commissural growth cones became larger and increased in complexity. The reorientation of axons in register with the floor plate boundary and the change in the morphological properties of commissural growth cones as they traverse the midline suggest that the floor plate may act as a guidepost with functions similar to cells that have been implicated in axon guidance in invertebrates.  相似文献   

6.
The commissural axons project toward and across the floor plate. They then turn into the longitudinal axis, extending along the contralateral side of the floor plate. F-spondin, a protein produced and secreted by the floor plate, promotes adhesion and neurite extension of commissural neurons in vitro. Injection of purified F-spondin protein into the lumen of the spinal cord of chicken embryos in ovo resulted in longitudinal turning of commissural axons before reaching the floor plate, whereas neutralizing antibody (Ab) injections caused lateral turning at the contralateral floor plate boundary. These combined in vitro and in vivo results suggest that F-spondin is required to prevent the lateral drifting of the commissural axons after having crossed the floor plate.  相似文献   

7.
Specialized cells at the midline of the central nervous system have been implicated in controlling axon projections in both invertebrates and vertebrates. To address the requirement for ventral midline cells in providing cues to commissural axons in mice, we have analyzed Gli2 mouse mutants, which lack specifically the floor plate and immediately adjacent interneurons. We show that a Dbx1 enhancer drives tau-lacZ expression in a subpopulation of commissural axons and, using a reporter line generated from this construct, as well as DiI tracing, we find that commissural axons projected to the ventral midline in Gli2(-/-) embryos. Netrin1 mRNA expression was detected in Gli2(-/-) embryos and, although much weaker than in wild-type embryos, was found in a dorsally decreasing gradient. This result demonstrates that while the floor plate can serve as a source of long-range cues for C-axons in vitro, it is not required in vivo for the guidance of commissural axons to the ventral midline in the mouse spinal cord. After reaching the ventral midline, most commissural axons remained clustered in Gli2(-/-) embryos, although some were able to extend longitudinally. Interestingly, some of the longitudinally projecting axons in Gli2(-/-) embryos extended caudally and others rostrally at the ventral midline, in contrast to normal embryos in which virtually all commissural axons turn rostrally after crossing the midline. This finding indicates a critical role for ventral midline cells in regulating the rostral polarity choice made by commissural axons after they cross the midline. In addition, we provide evidence that interactions between commissural axons and floor plate cells are required to modulate the localization of Nr-CAM and TAG-1 proteins on axons at the midline. Finally, we show that the floor plate is not required for the early trajectory of motoneurons or axons of the posterior commissure, whose projections are directed away from the ventral midline in both WT and Gli2(-/-) embryos, although they are less well organized in Gli2(-/-)mutants.  相似文献   

8.
Song L  Liu Y  Yu Y  Duan X  Qi S  Liu Y 《Cell research》2012,22(4):697-716
Relatively little is known about the molecular mechanisms underlying spatial pathfinding in the descending serotonergic raphespinal tract (RST) in the developing spinal cord, one of the most important nerve pathways for pain, sensory and motor functions. We provide evidence that ventral floor plate-secreted Sonic hedgehog (Shh) is responsible for the establishment of decreasing gradients in both the anterior-to-posterior (A-P) and the medial-to-lateral (M-L) directions in the ventral spinal cord during serotonergic RST axon projection. Downstream components of the Shh pathway, Patched 1 (Ptch1) and Smoothened (Smo), were expressed in the serotonergic caudal raphe nuclei and enriched in the descending serotonergic RST axons. Diffusible Shh repulsion of serotonergic RST axons was shown to be mediated by Shh-Ptch1 interactions and derepression of Smo. Using a co-culture assay, we showed that A-P graded repulsion mediated by Shh signaling pushed the serotonergic axons caudally through the ventral spinal cord and M-L graded repulsion mediated by Shh signaling simultaneously restricted the serotonergic axons to the ventral and ventral-lateral funiculus. Prominent pathfinding errors of serotonergic RST axons were observed in various Shh, Ptch1 and Smo mutants. We conclude that Shh signaling-mediated multidirectional repulsion is required to push descending serotonergic RST axons in the A-P direction, and to restrict these axons to the ventral and ventral-lateral funiculus in the M-L direction. This is the first demonstration that Shh signaling-mediated multidirectional repulsion of serotonergic RST axons maintains spatial axon pathfinding in the developing spinal cord.  相似文献   

9.
In the developing spinal cord, axons project in both the transverse plane, perpendicular to the floor plate, and in the longitudinal plane, parallel to the floor plate. For many axons, the floor plate is a source of long- and short-range guidance cues that govern growth along both dimensions. We show here that B-class transmembrane ephrins and their receptors are reciprocally expressed on floor plate cells and longitudinally projecting axons in the mouse spinal cord. During the period of commissural axon pathfinding, B-class ephrin protein is expressed at the lateral floor plate boundaries, at the interface between the floor plate and the ventral funiculus. In contrast, B-class Eph receptors are expressed on decussated commissural axon segments projecting within the ventral funiculus, and on ipsilaterally projecting axons constituting the lateral funiculus. Soluble forms of all three B-class ephrins bind to, and induce the collapse of, commissural growth cones in vitro. The collapse-inducing activity associated with B-class ephrins is likely to be mediated by EphB1. Taken together, these data support a possible role for repulsive B-class Eph receptor/ligand interactions in constraining the orientation of longitudinal axon projections at the ventral midline.  相似文献   

10.
Gore BB  Wong KG  Tessier-Lavigne M 《Neuron》2008,57(4):501-510
Commissural axons are attracted to the midline intermediate target by chemoattractants, but upon crossing the midline they switch off responsiveness to attractants and switch on responsiveness to midline repellents, which expel the axons from the midline and enable them to move on. Here we show that midline exit also requires the stimulation of axon outgrowth by Stem Cell Factor (SCF, also known as Steel Factor). SCF is expressed by midline floor plate cells, and its receptor Kit, a receptor tyrosine kinase, is expressed by commissural axons. In Steel and Kit mutant mice, the majority of commissural axons line up transiently at the contralateral edge of the floor plate, showing a delay in midline exit. In vitro, SCF selectively promotes outgrowth of postcrossing, but not precrossing, commissural axons. Our findings identify SCF as a guidance cue in the CNS, and provide evidence that exiting intermediate targets requires activation of outgrowth-promoting mechanisms.  相似文献   

11.
During development of the central nervous system (CNS), commissural axons grow toward the ventral midline. After crossing the floor plate, they abruptly change their trajectory from the circumferential to the longitudinal axis. The contacts between the commissural axons and the floor plate cells are involved in this axonal guidance, but their mechanisms or structures have not fully been understood. In this study, we found that nectin-1 and -3, immunoglobulin-like cell-cell adhesion molecules, asymmetrically localized at the contact sites between the commissural axons and the floor plate cells, respectively. In vitro perturbation of the endogenous trans-interaction between nectin-1 and -3 caused abnormal fasciculation of the commissural axons and impairment of the contacts, and resulted in failure in longitudinal turns of the commissural axons at the contralateral sites of the rat hindbrain. These results indicate that the contacts between the commissural axons and the floor plate cells are mediated by the hetero-trans-interaction between nectin-1 and -3 and involved in regulation of the trajectory of the commissural axons.  相似文献   

12.
13.
During development of the vertebrate CNS, commissural axons initially grow circumferentially toward the ventral midline floor plate. After crossing the floor plate, they abruptly change their trajectory from the circumferential to the longitudinal axis. Although recent studies have unraveled the mechanisms that control navigation of these axons along the circumferential axis, those that result in the transition from circumferential to longitudinal trajectory remain unknown. Here, we examined whether an interaction with the floor plate is a prerequisite for the initiation of trajectory transition of commissural axons, using in vitro preparations of the rat metencephalon. We found that commissural axons in the metencephalon, once having crossed the floor plate, turned sharply to grow longitudinally. In contrast, axons extending in floor plate-deleted preparations, continued to grow circumferentially, ignoring the hypothetical turning point. These results suggest that a prior interaction of commissural axons with floor plate cells is a key step for these axons to activate a navigation program required for their change in axonal trajectory from the circumferential to the longitudinal axis.  相似文献   

14.
In both invertebrate and lower vertebrate species, decussated commissural axons travel away from the midline and assume positions within distinct longitudinal tracts. We demonstrate that in the developing chick and mouse spinal cord, most dorsally situated commissural neuron populations extend axons across the ventral midline and through the ventral white matter along an arcuate trajectory on the contralateral side of the floor plate. Within the dorsal (chick) and intermediate (mouse) marginal zone, commissural axons turn at a conserved boundary of transmembrane ephrin expression, adjacent to which they form a discrete ascending fiber tract. In vitro perturbation of endogenous EphB-ephrinB interactions results in the failure of commissural axons to turn at the appropriate dorsoventral position on the contralateral side of the spinal cord; consequently, axons inappropriately invade more dorsal regions of B-class ephrin expression in the dorsal spinal cord. Taken together, these observations suggest that B-class ephrins act locally during a late phase of commissural axon pathfinding to specify the dorsoventral position at which decussated commissural axons turn into the longitudinal axis.  相似文献   

15.
Butler SJ  Dodd J 《Neuron》2003,38(3):389-401
During spinal cord development, commissural neurons extend their axons ventrally, away from the roof plate. The roof plate is the source of a diffusible repellent that orients commissural axons in vitro and, thus, may regulate the trajectory of commissural axons in vivo. Of three Bmps expressed in the roof plate, BMP7, but not BMP6 or GDF7, mimics the roof plate activity in vitro. We show here that expression of both Bmp7 and Gdf7 by roof plate cells is required for the fidelity of commissural axon growth in vivo. We also demonstrate that BMP7 and GDF7 heterodimerize in vitro and that, under these conditions, GDF7 enhances the axon-orienting activity of BMP7. Our findings suggest that a GDF7:BMP7 heterodimer functions as a roof plate-derived repellent that establishes the initial ventral trajectory of commissural axons.  相似文献   

16.
17.
In the developing nervous system, pathfinding axons navigate through a series of intermediate targets in order to form synaptic connections. Vertebrate spinal commissural axons extend toward and across the floor plate (FP), a key intermediate target located at the ventral midline (VM). Subsequently, post-crossing commissural axons grow either alongside or significant distances away from the floor plate (FP), but never re-cross the VM. Consistent with this behavior, post-crossing commissural axons lose responsiveness to the FP-associated chemoattractants, Netrin-1 and SHH, and gain responsiveness to Slits, which are potent midline repellents, in vitro. In addition, the results of several in vivo studies suggest that the upregulation of Slit-binding repulsive Robo receptors, Robo1/2, alters the responsiveness of decussated commissural axons to midline guidance cues. Nevertheless, in vertebrates, it is unclear whether Robo1/2 are the sole or major repellent receptors responsible for driving these commissural axons away from the VM and preventing their re-entry into the FP. We recently re-visited these issues in the chick spinal cord by assessing the consequences of manipulating Robo expression on commissural axons in ovo. Our findings suggest that, at least in chick embryos, the upregulation of repulsive Robos on post-crossing axons alters the responsiveness of these axons to midline repellents and facilitates their expulsion from, but is not likely to have a significant role in preventing their re-entry into the VM.  相似文献   

18.
19.
The floor plate of the vertebrate nervous system has been implicated in the guidance of commissural axons at the ventral midline. Experiments in chick have also suggested that at earlier stages of development the floor plate induces the differentiation of motor neurons and other neurons of the ventral spinal cord. Here we have examined the development of the spinal cord in a mouse mutant, Danforth's short-tail, in which the floor plate is absent from caudal regions of the neuraxis. In affected regions of the spinal cord, commissural axons exhibited aberrant projection patterns as they reached and crossed the ventral midline. In addition, motor neurons were absent or markedly reduced in number in regions of the spinal cord lacking a floor plate. Our results suggest that the floor plate is indeed an intermediate target in the projection of commissural axons and support the idea that several different mechanisms operate in concert in the guidance of axons to their cellular targets in the developing nervous system. In addition, these experiments suggest that the mechanisms that govern the differentiation of the floor plate and other ventral cell types in the neural tube are common to mammals and lower vertebrates.  相似文献   

20.
In vertebrate embryos, commissural axons extend toward and across the floor plate (FP), an intermediate target at the ventral midline (VM) of the spinal cord. After decussating, many commissural axons turn into the longitudinal plane and elaborate diverse projections. FP contact is thought to alter the responsiveness of these axons so that they can exit the FP and adopt new trajectories. However, a requirement for the FP in shaping contralateral commissural projections has not been established in higher vertebrates. Here we further analyze to what extent FP contact is necessary for the elaboration of decussated commissural projections both in cultured, FP-excised spinal cord preparations and in gli2-deficient mice, which lack a FP. In FP-lacking spinal cords, we observe a large number of appropriately projecting contralateral commissural projections in vivo and in vitro. Surprisingly, even though gli2 mutants lack a FP, slit1-3 mRNA and their receptors (Robo1/2) are expressed in a wild-type-like manner. In addition, blocking Robo-Slit interactions in FP-lacking spinal cord explants prevents commissural axons from leaving the VM and turning longitudinally. Thus, compared to FP contact, Slit-Robo interactions are more critical for driving commissural axons out of the VM and facilitating the elaboration of a subset of contralateral commissural projections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号