首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human pancreatic alpha-amylase (HPA) was expressed in the methylotrophic yeast Pichia pastoris and two mutants (D197A and D197N) of a completely conserved active site carboxylic acid were generated. All recombinant proteins were shown by electrospray ionization mass spectrometry (ESI-MS) to be glycosylated and the site of attachment was shown to be Asn461 by peptide mapping in conjunction with ESI-MS. Treatment of these proteins with endoglycosidase F demonstrated that they contained a single N-linked oligosaccharide and yielded a protein product with a single N-acetyl glucosamine (GlcNAc), which could be crystallized. Solution of the crystal structure to a resolution of 2.0 A confirmed the location of the glycosyl group as Asn461 and showed that the recombinant protein had essentially the same conformation as the native enzyme. The kinetic parameters of the glycosylated and deglycosylated wild-type proteins were the same while the k(cat)/Km values for D197A and D197N were 10(6)-10(7) times lower than the wild-type enzyme. The decreased k(cat)/Km values for the mutants confirm that D197 plays a crucial role in the hydrolytic activity of HPA, presumably as the catalytic nucleophile.  相似文献   

2.
This study characterizes the substrate-binding sites of human salivary alpha-amylase (HSA) and its Y151M mutant. It describes the first subsite maps, namely, the number of subsites, the position of cleavage sites and apparent subsite energies. The product pattern and cleavage frequencies were determined by high-performance liquid chromatography, utilizing a homologous series of chromophore-substituted maltooligosaccharides of degree of polymerization 3-10 as model substrates. The binding region of HSA is composed of four glycone and three aglycone-binding sites, while that of Tyr151Met is composed of four glycone and two aglycone-binding sites. The subsite maps show that Y151M has strikingly decreased binding energy at subsite (+2), where the mutation has occurred (-2.6 kJ/mol), compared to the binding energy at subsite (+2) of HSA (-12.0 kJ/mol).  相似文献   

3.
Site-directed mutagenesis of Bacillus subtilis N7 alpha-amylase has been performed to evaluate the roles of the active site residues in catalysis and to prepare an inactive catalytic-site mutant that can form a stable complex with natural substrates. Mutation of Asp-176, Glu-208, and Asp-269 to their amide forms resulted in over a 15,000-fold reduction of its specific activity, but all the mutants retained considerable substrate-binding abilities as estimated by gel electrophoresis in the presence of soluble starch. Conversion of His-180 to Asn resulted in a 20-fold reduction of kcat with a 5-fold increase in Km for a maltopentaose derivative. The relative affinities for acarbose vs. maltopentaose were also compared between the mutants and wild-type enzyme. The results are consistent with the roles previously proposed in Taka-amylase A and porcine pancreatic alpha-amylase based on their X-ray crystallographic analyses, although different pairs had been assigned as catalytic residues for each enzyme. Analysis of the residual activity of the catalytic-site mutants by gel electrophoresis has suggested that it derived from the wild-type enzyme contaminating the mutant preparations, which could be removed by use of an acarbose affinity column; thus, these mutants are completely devoid of activity. The affinity-purified mutant proteins should be useful for elucidating the complete picture of the interaction of this enzyme with starch.  相似文献   

4.
To assess the subsites involved in substrate binding in Aspergillus niger endopolygalacturonase II, residues located in the potential substrate binding cleft stretching along the enzyme from the N to the C terminus were subjected to site-directed mutagenesis. Mutant enzymes were characterized with respect to their kinetic parameters using polygalacturonate as a substrate and with respect to their mode of action using oligogalacturonates of defined length (n = 3-6). In addition, the effect of the mutations on the hydrolysis of pectins with various degrees of esterification was studied. Based on the results obtained with enzymes N186E and D282K it was established that the substrate binds with the nonreducing end toward the N terminus of the enzyme. Asn(186) is located at subsite -4, and Asp(282) is located at subsite +2. The mutations D183N and M150Q, both located at subsite -2, affected catalysis, probably mediated via the sugar residue bound at subsite -1. Tyr(291), located at subsite +1 and strictly conserved among endopolygalacturonases appeared indispensable for effective catalysis. The mutations E252A and Q288E, both located at subsite +2, showed only slight effects on catalysis and mode of action. Tyr(326) is probably located at the imaginary subsite +3. The mutation Y326L affected the stability of the enzyme. For mutant E252A, an increased affinity for partially methylesterified substrates was recorded. Enzyme N186E displayed the opposite behavior; the specificity for completely demethylesterified regions of substrate, already high for the native enzyme, was increased. The origin of the effects of the mutations is discussed.  相似文献   

5.
Li C  Begum A  Numao S  Park KH  Withers SG  Brayer GD 《Biochemistry》2005,44(9):3347-3357
A mechanistic study of the poorly understood pathway by which the inhibitor acarbose is enzymatically rearranged by human pancreatic alpha-amylase has been conducted by structurally examining the binding modes of the related inhibitors isoacarbose and acarviosine-glucose, and by novel kinetic measurements of all three inhibitors under conditions that demonstrate this rearrangement process. Unlike acarbose, isoacarbose has a unique terminal alpha-(1-6) linkage to glucose and is found to be resistant to enzymatic rearrangement. This terminal glucose unit is found to bind in the +3 subsite and for the first time reveals the interactions that occur in this part of the active site cleft with certainty. These results also suggest that the +3 binding subsite may be sufficiently flexible to bind the alpha-(1-6) branch points in polysaccharide substrates, and therefore may play a role in allowing efficient cleavage in the direct vicinity of such junctures. Also found to be resistant to enzymatic rearrangement was acarviosine-glucose, which has one fewer glucose unit than acarbose. Collectively, structural studies of all three inhibitors and the specific cleavage pattern of HPA make it possible to outline the simplest sequence of enzymatic reactions likely involved upon acarbose binding. Prominent features incorporated into the starting structure of acarbose to facilitate the synthesis of the final tightly bound pseudo-pentasaccharide product are the restricted availability of hydrolyzable bonds and the placement of the transition state-like acarviosine group. Additional "in situ" experiments designed to elongate and thereby optimize isoacarbose and acarviosine-glucose inhibition using the activated substrate alphaG3F demonstrate the feasibility of this approach and that the principles outlined for acarbose rearrangement can be used to predict the final products that were obtained.  相似文献   

6.
Within the scope of improving the efficiency of pancreatic enzyme replacement therapy in cystic fibrosis, the feasibility of shifting the pH-activity profile of pancreatic lipase toward acidic values was investigated by site specific mutagenesis in different regions of the catalytic cavity. We have shown that introducing a negative charge close to the catalytic histidine induced a shift of the pH optimum toward acidic values but strongly reduced the lipase activity. On the other hand, a negative charge in the entrance of the catalytic cleft gives rise to a lipase with improved properties and twice more active than the native enzyme at acidic pH.  相似文献   

7.
The roles of three conserved active site carboxylic acids (D197, E233, and D300) in the catalytic mechanism of human pancreatic alpha-amylase (HPA) were studied by utilizing site-directed mutagenesis in combination with structural and kinetic analyses of the resultant enzymes. All three residues were mutated to both alanine and the respective amide, and a double alanine mutant (E233A/D300A) was also generated. Structural analyses demonstrated that there were no significant differences in global fold for the mutant enzymes. Kinetic analyses were performed on the mutants, utilizing a range of substrates. All results suggested that D197 was the nucleophile, as virtually all activity (>10(5)-fold decrease in k(cat) values) was lost for the enzymes mutated at this position when assayed with several substrates. The significantly greater second-order rate constant of E233 mutants on "activated" substrates (k(cat)/K(m) value for alpha-maltotriosyl fluoride = 15 s(-)(1) mM(-)(1)) compared with "unactivated" substrates (k(cat)/K(m) value for maltopentaose = 0.0030 s(-)(1) mM(-)(1)) strongly suggested that E233 is the general acid catalyst, as did the pH-activity profiles. Transglycosylation was favored over hydrolysis for the reactions of several of the enzymes mutated at D300. At the least, this suggests an overall impairment of the catalytic mechanism where the reaction then proceeds using the better acceptor (oligosaccharide instead of water). This may also suggest that D300 plays a crucial role in enzymic interactions with the nucleophilic water during the hydrolysis of the glycosidic bond.  相似文献   

8.
Cellodextrin phosphorylase from Clostridium stercorarium has been recombinantly expressed in Escherichia coli for the first time. Kinetic characterization of the purified enzyme has revealed that aryl and alkyl β-glucosides can be efficiently glycosylated, an activity that has not yet been described for this enzyme class. To obtain a better understanding of the factors that determine the enzyme's specificity, homology modeling and ligand docking were applied. Residue W168 has been found to form a hydrophobic stacking interaction with the substrate in subsite +2, and its importance has been examined by means of site-directed mutagenesis. The mutant W168A retains about half of its catalytic activity, indicating that other residues also contribute to the binding affinity of subsite +2. Finally, residue D474 has been identified as the catalytic acid, interacting with the glycosidic oxygen between subsites -1 and +1. Mutating this residue results in complete loss of activity. These results, for the first time, provide an insight in the enzyme-substrate interactions that determine the activity and specificity of cellodextrin phosphorylases.  相似文献   

9.
The importance of electrostatics in catalysis has been emphasized in the literature for a large number of enzymes. We examined this hypothesis for the Bacillus licheniformis alpha-amylase by constructing site-directed mutants that were predicted to change the pKa values of the catalytic residues and thus change the pH-activity profile of the enzyme. To change the pKa of the catalytic residues in the active site, we constructed mutations that altered the hydrogen bonding network, mutations that changed the solvent accessibility, and mutations that altered the net charge of the molecule. The results show that changing the hydrogen bonding network near an active site residue or changing the solvent accessibility of an active site residue will very likely result in an enzyme with drastically reduced activity. The differences in the pH-activity profiles for these mutants were modest. pH-activity profiles of mutants which change the net charge on the molecule were significantly different from the wild-type pH-activity profile. The differences were, however, difficult to correlate with the electrostatic field changes calculated. In several cases we observed that pH-activity profiles shifted in the opposite direction compared to the shift predicted from electrostatic calculations. This strongly suggests that electrostatic effects cannot be solely responsible for the pH-activity profile of the B. licheniformis alpha-amylase.  相似文献   

10.
Chemical modification and site-specific mutagenesis approaches were used in this study to identify the active site serine residue of pancreatic cholesterol esterase. In the first approach, purified porcine pancreatic cholesterol esterase was covalently modified by incubation with [3H]diisopropylfluorophosphate (DFP). The radiolabeled cholesterol esterase was digested with CNBr, and the peptides were separated by high performance liquid chromatography. A single 3H-containing peptide was obtained for sequence determination. The results revealed the binding of DFP to a serine residue within the serine esterase homologous domain of the protein. Furthermore, the DFP-labeled serine was shown to correspond to serine residue 194 of rat cholesterol esterase (Kissel, J. A., Fontaine, R. N., Turck, C. W., Brockman, H. L., and Hui, D. Y. (1989) Biochim. Biophys. Acta 1006, 227-236). The codon for serine 194 in rat cholesterol esterase cDNA was then mutagenized to ACT or GCT to yield mutagenized cholesterol esterase with either threonine or alanine, instead of serine, at position 194. Expression of the mutagenized cDNA in COS-1 cells demonstrated that substitution of serine 194 with threonine or alanine abolished enzyme activity in hydrolyzing the water-soluble substrate, p-nitrophenyl butyrate, and the lipid substrates cholesteryl [14C]oleate and [14C] lysophosphatidylcholine. These studies definitively identified serine 194 in the catalytic site of pancreatic cholesterol esterase.  相似文献   

11.
In order to carry out studies on structure and function relationships of porcine pepsinogen using site-directed mutagenesis approaches, the cDNA of this zymogen was cloned, sequenced, expressed in Escherichia coli, and the protein refolded, and purified to homogeneity. Porcine pepsinogen cDNA, obtained from a lambda gt10 cDNA library of porcine stomach contains 1364 base pairs. It contains leader, pro, and pepsin regions of 14, 44, and 326 residues, respectively. In addition, it also contains 5'- and 3'-untranslated regions. Four differences are present between the sequence deduced from the cDNA and the pepsinogen sequence determined previously by protein chemistry methods. Residues P19 (in the pro region) and 263 are asparagines in the cDNA sequence instead of aspartic acids. Isoleucine 230 is not present in the cDNA sequence and residue 242 is a tyrosine in the cDNA instead of an aspartic acid. Porcine pepsinogen cDNA was placed under the control of a tac promoter in a plasmid and expressed in E. coli. The synthesis of pepsinogen was optimized to about 50 mg/liter of culture. The recombinant (r-) pepsinogen, which was insoluble, was recovered by centrifugation, washed, dissolved in 6 M urea in Tris-HCl, pH 8, and refolded by rapid dilution. r-pepsinogen was purified to homogeneity after chromatography on Sephacryl S-300 and fast protein liquid chromatography on a monoQ column. r-pepsinogen contains an additional methionine residue at the NH2 terminus as compared to native (n-) pepsinogen. However, r- and n-pepsinogens are indistinguishable in their intramolecular activation constants. After activation, r- and n-pepsins have the same NH2-terminal sequences as well as Km values. Based on these data, r-pepsinogen was judged suitable for mutagenesis studies. A mutant pepsinogen (D32A) with the active site aspartic acid changed to an alanine was produced and purified. D32A-pepsinogen did not convert to pepsin in acid solution but it bound to pepstatin with an apparent KD of about 5 x 10(-10) M. D32A-pepsinogen possesses no detectable proteolytic activity. These results indicate that (i) intramolecular pepsinogen activation is accomplished by the pepsin active site, and (ii) unlike subtilisin (Carter, P., and Wells, J. A. (1988) Nature 332, 564-568), the active site mutant of pepsin is not enzymically active.  相似文献   

12.
Glucokinase (GK) is the central player in glucose-stimulated insulin release from pancreatic β-cells, and catalytic activation by α-D-glucose binding has a key regulatory function. Whereas the mechanism of this activation is well understood, on the basis of crystal structures of human GK, there are no similar structural data on ATP binding to the ligand-free enzyme and how it affects its conformation. Here, we report on a conformational change induced by the binding of adenine nucleotides to human pancreatic GK, as determined by intrinsic tryptophan fluorescence, using the catalytically inactive mutant form T228M to correct for the inner filter effect. Adenosine-5'-(β,γ-imido)triphosphate and ATP bind to the wild-type enzyme with apparent [L](0.5) (ligand concentration at half-maximal effect) values of 0.27±0.02 mm and 0.78±0.14 mm, respectively. The change in protein conformation was further supported by ATP inhibition of the binding of the fluorescent probe 8-anilino-1-naphthalenesulfonate and limited proteolysis by trypsin, and by molecular dynamic simulations. The simulations provide a first insight into the dynamics of the binary complex with ATP, including motion of the flexible surface/active site loop and partial closure of the active site cleft. In the complex, the adenosine moiety is packed between two α-helices and stabilized by hydrogen bonds (with Thr228, Thr332, and Ser336) and hydrophobic interactions (with Val412 and Leu415). Combined with enzyme kinetic analyses, our data indicate that the ATP-induced changes in protein conformation may have implications for the kinetic cooperativity of the enzyme.  相似文献   

13.
齐西珍  任丽梅  郑芳  张奇  白芳  白钢 《微生物学报》2011,51(8):1106-1112
【目的】针对人胰腺α-淀粉酶这个糖代谢途径中重要的靶蛋白,建立α-淀粉酶抑制剂高通量筛选模型。【方法】采用毕赤酵母表达系统克隆和表达人胰腺α-淀粉酶;利用酶的催化特性建立α-淀粉酶抑制剂筛选模型;应用该模型对放线菌发酵液冻干物进行高通量筛选;通过构建16S rRNA系统发育树分析阳性菌株的分类地位。【结果】成功克隆、表达了具催化活性的人胰腺α-淀粉酶;建立了α-淀粉酶抑制剂的筛选模型;对近2000株放线菌的发酵液冻干物进行高通量筛选,最终得到14株α-淀粉酶抑制剂产生菌株,且在分类学上具有丰富的菌种多样性。【结论】本研究建立的α-淀粉酶抑制剂高通量筛选模型具有很强的实用价值,可用于新型淀粉酶抑制剂类降糖药物的开发。  相似文献   

14.
The modes of action of two isozymes of human salivary alpha-amylase on phenyl alpha-maltopentaoside, phenyl alpha-maltotetraoside, and their derivatives which have an iodo or an amino or a carboxyl group at their first or penultimate glucopyranosyl residues from the non-reducing-end were examined. It is conceivable that the active site of this enzyme is composed of tandem subsites (S4,S3,S2,S1,S1',S2', and S3') geometrically complementary to several glucose residues, and that the glucosidic bonds of the substrates are split between S1 and S1'. Product analysis of each digest strongly suggested the presence of a hydrophobic amino acid residue at subsite S3 in the active site of the enzyme. No difference in the modes of action on the substrates was found between the two isozymes, indicating that the three-dimensional structures of their active site areas are, at the least, similar.  相似文献   

15.
In order to characterize the active site of yeast dipeptidase in more detail, kinetic studies with a variety of dipeptide substrates and substrate analogs were performed. To analyze kinetic data, computer programs were developed which first calculate initial velocities from progress curves and then evaluate the kinetic parameters by nonlinear regression analysis. A free carboxyl group is a prerequisite for binding of dipeptidase substrates; its position relative to the peptide bond must not deviate from the normal L-dipeptide conformation. The spatial arrangement of the terminal ammonium ion seems to be less crucial. The enzyme's substrate specificity clearly reflects the interactions of the substrate amino acid side chains with complementary dipeptidase subsites. The domain of the enzyme in contact with the C-terminal substrate side chain seems to be an open structure of moderately hydrophobic character. In contrast, the binding site for the amino-terminal side chain is a more strongly hydrophobic "pocket" of limited dimensions. The kinetics of inhibition by free amino acids points to an ordered release of products from the enzyme.  相似文献   

16.
dUTPase is responsible for preventive DNA repair via exclusion of uracil. Developmental regulation of the Drosophila enzyme is suggested to be involved in thymine-less apoptosis. Here we show that in addition to conserved dUTPase sequence motifs, the gene of Drosophila enzyme codes for a unique Ala-Pro-rich segment. Kinetic and structural analyses of the recombinant protein and a truncation mutant show that the Ala-Pro segment is flexible and has no regulatory role in vitro. The homotrimer enzyme unfolds reversibly as a trimeric entity with a melting temperature of 54 degrees C, 23 degrees C lower than Escherichia coli dUTPase. In contrast to the bacterial enzyme, Mg(2+) binding modulates conformation of fly dUTPase, as identified by spectroscopy and by increment in melting temperature. A single well folded, but inactive, homotrimeric core domain is generated through three distinct steps of limited trypsinolysis. In fly, but not in bacterial dUTPase, binding of the product dUMP induces protection against proteolysis at the tryptic site reflecting formation of the catalytically competent closed conformer. Crystallographic analysis argues for the presence of a stable monomer of Drosophila dUTPase in crystal phase. The significant differences between prototypes of eukaryotic and prokaryotic dUTPases with respect to conformational flexibility of the active site, substrate specificity, metal ion binding, and oligomerization in the crystal phase are consistent with alteration of the catalytic mechanism and hydropathy of subunit interfaces.  相似文献   

17.
Wang H  Vath GM  Gleason KJ  Hanna PE  Wagner CR 《Biochemistry》2004,43(25):8234-8246
Arylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to arylamines, hydrazines, and their N-hydroxylated arylamine metabolites. The recently determined three-dimensional structures of prokaryotic NATs have revealed a cysteine protease-like Cys-His-Asp catalytic triad, which resides in a deep and hydrophobic pocket. This catalytic triad is strictly conserved across all known NATs, including hamster NAT2 (Cys-68, His-107, and Asp-122). Treatment of NAT2 with either iodoacetamide (IAM) or bromoacetamide (BAM) at neutral pH rapidly inactivated the enzyme with second-order rate constants of 802.7 +/- 4.0 and 426.9 +/- 21.0 M(-1) s(-1), respectively. MALDI-TOF and ESI mass spectral analysis established that Cys-68 is the only site of alkylation by IAM. Unlike the case for cysteine proteases, no significant inactivation was observed with either iodoacetic acid (IAA) or bromoacetic acid (BAA). Pre-steady state and steady state kinetic analysis with p-nitrophenyl acetate (PNPA) and NAT2 revealed a single-exponential curve for the acetylation step with a second-order rate constant of (1.4 +/- 0.05) x 10(5) M(-1) s(-1), followed by a slow linear rate of (7.85 +/- 0.65) x 10(-3) s(-1) for the deacetylation step. Studies of the pH dependence of the rate of inactivation with IAM and the rate of acetylation with PNPA revealed similar pK(a)(1) values of 5.23 +/- 0.09 and 5.16 +/- 0.04, respectively, and pK(a)(2) values of 6.95 +/- 0.27 and 6.79 +/- 0.25, respectively. Both rates reached their maximum values at pH 6.4 and decreased by only 30% at pH 9.0. Kinetic studies in the presence of D(2)O revealed a large inverse solvent isotope effect on both inactivation and acetylation of NAT2 [k(H)(inact)/k(D)(inact) = 0.65 +/- 0.02 and (k(2)/K(m)(acetyl))(H)/(k(2)/K(m)(acetyl))(D) = 0.60 +/- 0.03], which were found to be identical to the fractionation factors (Phi) derived from proton inventory studies of the rate of acetylation at pL 6.4 and 8.0. Substitution of the catalytic triad Asp-122 with either alanine or asparagine resulted in the complete loss of protein structural integrity and catalytic activity. From these results, it can be concluded that the catalytic mechanism of NAT2 depends on the formation of a thiolate-imidazolium ion pair (Cys-S(-)-His-ImH(+)). However, in contrast to the case with cysteine proteases, a pH-dependent protein conformational change is likely responsible for the second pK(a), and not deprotonation of the thiolate-imidazolium ion. In addition, substitutions of the triad aspartate are not tolerated. The enzyme appears, therefore, to be engineered to rapidly form a stable acetylated species poised to react with an arylamine substrate.  相似文献   

18.
Benzaldehyde lyase (BAL) is a thiamin diphosphate-dependent enzyme, which catalyzes the breakdown of (R)-benzoin to benzaldehyde. In essence, this is the reverse of the carboligation reaction catalyzed by benzoylformate decarboxylase (BFD). Here, we describe the first steps towards understanding the factors influencing BFD to form a CC bond under conditions wherein BAL will cleave the same bond. What are the similarities and differences between these two enzymes that result in the different catalytic activities? The X-ray structures of BFD and pyruvate decarboxylase (PDC) were used as templates for modeling benzaldehyde lyase. The model shows that a glutamine residue, Gln113, replaces the active site histidines of BFD and PDC. Replacement of the Gln113 by alanine or histidine reduced the value of k(cat) for lyase activity by more than 200-fold. The residues in BFD interacting with the phenyl ring of benzoylformate have similarly positioned counterparts in BAL but Ser26, the residue known to interact with the carboxylate group of benzoylformate, has been replaced by an alanine (Ala28). The BAL A28S variant exhibited 7% of WT activity in the BAL assay but, in the most intriguing result, this variant was able to catalyze the decarboxylation of benzoylformate. Conversely, the BFD S26A variant was unable to cleave benzoin.  相似文献   

19.
A Horii  M Emi  N Tomita  T Nishide  M Ogawa  T Mori  K Matsubara 《Gene》1987,60(1):57-64
We have determined the entire structure of the human pancreatic alpha-amylase (Amy2) gene. It is approx. 9 kb long and is separated into ten exons. This gene (amy2) has a structure very similar to that of human salivary alpha-amylase (Amy1) gene [Nishide et al. Gene 41 (1986a) 299-304] in the nucleotide sequence and the size and location of the exons. The major difference lies in the fact that amy1 has one extra exon on the 5' side. Other differences are at the 5' border of exon 1 and the 3' border of exon 10. The close similarity of these two genes, as compared with mouse pancreatic and salivary amylase genes, suggests that during evolution, the divergence into the two amylase genes may have occurred after the divergence of mice and man.  相似文献   

20.
Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase which cleaves the beta-glucosidic linkage of glucosylceramide, a normal intermediate in glycolipid metabolism. Glucocerebrosidase belongs to the clan GH-A of glycoside hydrolases, a large group of enzymes which function with retention of the anomeric configuration at the hydrolysis site. Accurate three-dimensional (3D) structure data for glucocerebrosidase should help to better understand the molecular bases of Gaucher disease. As such 3D structure data were not available, we used the two-dimensional hydrophobic cluster analysis (HCA) method to make structure predictions for the catalytic domains of clan GH-A glycoside hydrolases. We found that all the enzymes of clan GH-A may share a similar catalytic domain consisting of an (alpha/beta)8 barrel with the critical acid/base and nucleophile residues located at the C-terminal ends of strands beta 4 and beta 7, respectively. In the case of glucocerebrosidase, Glu 235 was predicted to be the putative acid/base catalyst whereas the nucleophile was located at Glu 340. Next, in order to obtain experimental evidence supporting these HCA-based predictions, we used retroviral vectors to express, in murine null cells, E235A and E340A mutant proteins, in which alanine residues unable to participate in the enzymatic reaction replace the presumed critical glutamic acid residues. Both mutants were found to be catalytically inactive although they were correctly folded/processed and sorted to the lysosome. Thus, Glu 235 and Glu 340 do indeed play key roles in the active site of human glucocerebrosidase as predicted by the HCA analysis. In a broader perspective, our work points out that bioinformatics approaches may be highly useful for generating structure-function predictions based on sequence-structure interrelationships, especially in the context of a rapid increase in protein sequence information through genome sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号