首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subcellular localization of sorbitol-6-phosphate (S6P) dehydrogenasein protoplasts of apple cotyledons was examined by differentialcentrifugation and linear sucrose density gradient centrifugation(30–60%, w/w). The distribution of S6P dehydrogenase activitywas 55% in the 500 x g pellet of the homogenate and 35% in thesupernatant of 105,000 x g. When the x g pellet was recentrifugedin a linear sucrose density gradient, one major peak of activitywas found at a density of 1.23. This peak coincided with themajor peak of chlorophyll and NADP+-triose-P dehydrogenase activity.When the 500 x g pellet was sonicated, the major peak of S6Pdehydrogenase activity shifted to a lighter density (d=1.18).The shifted peak also coincided with the peak of chlorophyll.The enzyme detected in the major peak of chlorophyll (d=1.23)was partially solubilized by sonic or detergent treatment, butnot by hypotonic solution. The results supported the localizationof S6P dehydrogenase in chloroplasts, and presumably their associationwith thylakoid membranes. Part of the enzyme was assumed tobe naturally present in the cytosol, too. (Received November 4, 1980; Accepted January 21, 1981)  相似文献   

2.
The uptake kinetics of sorbitol, sucrose, glucose and fructoseacross the plasma membrane using protoplasts isolated from applefruit flesh (Malus pumila Mill. var. domestica Schneid.) wasinvestigated. When sorbitol was taken up into the cell, PCMBS-sensitivesaturable transport was distinguishable from the diffusive transport.At a low sorbitol concentration, the saturable transport systemaccounted for more than 50% of the total uptake, whereas ata high concentration the diffusive transport system was moredominant. The saturable transport was suggested be a carrier-mediatedtransport system coupled with ATP because the system was inhibitedCCCP or orthovanadate. The Km value for sorbitol was computedto be 3.6mM. A carrier-mediated transport system coupled withATP was also observed for glucose and fructose with correspondingKm values of 5.0 and 2.5 mM. However, no saturable transportfor sucrose was observed over a range of 0.1 to 10 mM sucroseconcentration. The relationship among these sugar transportsystems across the plasma membrane, apoplastic unloading, andsugar accumulation vacuoles are discussed. 1Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Chikusa, Nagoya 464, Japan. (Received April 8, 1988; Accepted June 8, 1988)  相似文献   

3.
Tissue pieces excised from orchard-grown apple trees duringa growing season exhibited different and changing capabilitiesof transferring 14C-label from sucrose, fructose and sorbitolto other soluble carbohydrates. All tissues incorporated fructose14C into sucrose but only leaves incorporated significant amountsof label from sucrose into sorbitol. As seeds developed andmatured, their ability to incorporate 14C from sorbitol andfrom fructose into sucrose increased. Sorbitol and sucrose arethe major translocated photosynthetic products of apple leavesbut whereas sorbitol appears to be an end-product of synthesis,sucrose may be considered as a substrate involved more directlyin carbohydrate utilization. Key words: Malus domestica, Apple, Carbohydrate interconversions  相似文献   

4.
Microbodies were isolated from, sweet potato root tissue bydifferential and linear sucrose density gradient centrifugation.When the tissue was homogenized in the presence of PolyclarAT, the microbodies sedimented together with the mitochondriathrough the sucrose gradients. The microbodies had a densityof 1.25 g/cm3, and contained catalase and urate oxidase, butnot malate dehydrogenase, isocitrate lyase, glycolate oxidase,hydroxypyruvate reductase and the cyanide-insensitive palmitoylCoA-oxidation system. A small amount of o-diphenol oxidase alsoseemed to be present. Catalase, but not urate oxidase, activity in the crude extractincreased during aging of the sliced tissue. A similar resultwas obtained with the microbody fraction after linear sucrosedensity gradient centrifugation. We propose that microbodiescontaining only catalase develop during aging of sliced sweetpotato root tissue. 1 This work was supported in part by a Grant-in-Aid (No. 311908)for Scientific Research from the Ministry of Education, Scienceand Culture, Japan. (Received June 20, 1979; )  相似文献   

5.
Svintitskikh, V. A., Andrianov, V. K. and Bulychev, A. A. 1985.Photo-induced H+ transport between chloroplasts and the cytoplasmin a protoplasmic droplet of Characeae.—J. exp. Bot. 36:1414–1429. The effects of light on the membrane potential and cytoplasmicpH of isolated droplets of protoplasm from Nitella have beenstudied using microcapillary electrodes and pH-sensitive antimonymicro-electrodes. Illumination of chloroplast-containing dropletscaused a change of the membrane potential with a concomitantacidification of both the cytoplasm and the outer medium, butit had no effect on the electrical resistance of the surfacemembrane. Treatment of protoplasmic droplets with uncouplers(NH4Cl and CCCP) resulted in a complete inhibition of the light-inducedacidification of the cytoplasm, whereas the energy transferinhibitor DCCD had no effect. A correlation between the formationof a pH gradient across the thylakoid membrane and the acidificationof the cytoplasm was explicable in terms of the assumption ofrestricted spatial communication between the intra-thylakoidvolume and the cytoplasm in intact chloroplast. The photo-inducedacidification of the boundary layer of an external medium wasmarkedly stimulated under the action of inhibitors of H+-ATPaseDCCD and DES. These findings suggest that the active extrusionof H+ from the cytoplasm into the external medium is not drivenby an ATPase, although H+-conducting channels of membrane ATPaseprovide a pathway for a passive diffusion of protons from outsideinto the cytoplasm Key words: Transport of protons, protoplasmic droplet, intact chloroplasts, Characeae  相似文献   

6.
Poly(A)+ and poly(A)RNA from wounded potato tuber tissuesand crown gall tumors were separated from total RNA by oligodeoxythymidylicacid-cellulose affinity chromatography. The poly(A)+RNA wascharacterized by sucrose density gradient centrifugation, hybridizationwith 3(H)polyuridylic acid [Poly(U)] and in vitro translationin a rabbit reticulocyte lysate system. The tumor poly(A)+RNAwas a heterodisperse mixture from 3.5S to 35S. Upon poly(U)hybridization of the gradient fractions two major hybridizationpeaks at 7S and 21S and two peaks at 11S and 16S appeared. Inan in vitro translation system the poly(A)+RNA programmed thesynthesis of 23 different polypeptides of 9,000 to 79,800 daltonsmolecular weight as determined by SDS-polyacrylamide gel electrophoresis.The 21S poly(A)+RNA was about 5 times more active in in vitroprotein synthesis than the 7S poly(A)+RNA. The poly(A)+RNA from wounded tissues was also heterodisperse(from 4.5S to 31S) with a modal peak at 18S. This RNA codedfor at least 28 polypeptides, which were different from thoseof crown gall tumor tissues. On a per unit poly(A)+RNA basis the tumor RNA was slightly moreactive in translation than that from wounded tissues. The translationof tumor poly(A)+RNA was completely blocked by 0.5 mM 7-methylguanosine5'-phosphate, but not by 7-methylguanosine, suggesting the presenceof a 5'-cap structure. (Received May 15, 1982; Accepted June 30, 1982)  相似文献   

7.
Two membrane fractions were obtained from 16%/26% and 34%/40%interfaces following discontinuous sucrose density gradientcentrifugation of a 10,000–80,000xg pellet from mung bean(Phaseolus mungo L.) roots. The ATPases in the fractions differedfrom each other in their sensitivity toward various inhibitors,activation with salts, dependence of activity on pH, and Kmfor ATP.Mg2+. Judging from their sensitivity toward inhibitors,the ATPases in the low and high density membranes are consideredmainly of tonoplast and plasma membrane origin, respectively.Both ATPases were activated by gramicidin D and nigericin. ATP-inducedquenching of quinacrine fluorescence in both fractions requiredMg2+ and permeant anions such as Cl and quenching wascollapsed by carbonylcyanide p-trifluoromethoxyphenyl hydrazone.The sensitivities of quenching to the inhibitors were essentiallythe same as those of ATPase activity in the membranes. Thesefindings suggest the involvement of ATPases in H+-pumping acrossa plasma membrane and tonoplast. (Received April 12, 1985; Accepted October 11, 1985)  相似文献   

8.
In order to study the transnodal transport of Rb+ in internodalcells of Chara corallina, a low-temperature loading system wasestablished to separate the loading process from the transportprocess. Tandem cells, consisting of internode-node-internode,were isolated from algal plants. Treatment of a single internodewith 100 mM RbCl at 5°C for 30 min caused an accumulationof 43 mM Rb+ in the cytoplasm of this cell (= source cell),but no Rb+ was found in the other internode (= sink cell) ofthe tandem cells. In 40 min after a return to 25°C, about12% of the Rb+ loaded in the source cell was transported intothe sink cell. The apparent transnodal permeability of Rb+ wascalculated to be 4.6 x 10–7 m.s–1. Under the assumptionthat the total cross-sectional area of plasmodesmata occupies10% of the nodal area, the diffusion coefficient of RbCl throughplasmodesmata was calculated to be 2.3 x 10–11 m2.s–1which is about 1% of the free diffusion coefficient in water(2 x 10–9m2.s–1). The transnodal transport of Rb+ was intimately correlated withthe rate of cytoplasmic streaming. The rate of streaming inboth the source and sink cells was varied either by treatingthe cells with cytochalasin B (CB) or by lowering the temperature.The transport rate correlated with the streaming rate irrespectiveof the method used. Since the level of ATP was not influencedby CB or low temperature, the transnodal transport is assumedto be the result of passive diffusion process through plasmodesmata. A turgor pressure gradient across the node decreased both thenodal electrical conductance and the transnodal transport ofRb+. By contrast, the exposure of both internodal cells to asolution of sorbitol had no effect on either of them. A turgorpressure gradient of 240 mOsm decreased the transport of Rb+in the first hour to 3% of the control, while it decreased thenodal conductance to about 50%. The increase in the electricalresistance occurred on the junction side between the node andthe internode that was treated with sorbitol. Cytochalasin Ehad no effect on the nodal electrical resistance. It is assumedthat plasmodesmata are equipped with a valve-like mechanismwhich is sensitive to the gradient of turgor pressure acrossthe node and is not regulated by an actomyosin system. (Received February 15, 1989; Accepted April 20, 1989)  相似文献   

9.
Tonoplast vesicles were prepared from the flesh tissue of maturepear fruit. Sugar uptakes into the vesicles determined by twodifferent methods, the membrane and the gel filtration methods,were quite similar. The uptake was highest for glucose and subsequently,in order, for fructose, sucrose and sorbitol. It was not stimulatedby addition of ATP, although the vesicles could create a protongradient. However, the uptakes were significantly inhibitedby p-chloromercuribenzene sulphonate (PCMBS, SH-reagent andinhibitor of sugar transporter). Further, the PCMBS-sensitiveuptakes of glucose and fructose saturated with their increasedconcentrations. Thus, these PCMBS-sensitive uptakes are mediatedby the transporter of facilitated diffusion. The uptakes ofglucose or fructose each had two Km values. Km values for glucosewere 0.35 and 18 mM, and those for fructose were 1.6 and 25raM. The uptake of 0.2 mM glucose was inhibited by 2 mM fructoseand that of 2 mM fructose was inhibited by 2 mM glucose, butneither was inhibited by sucrose or sorbitol. O-methyl-glucose(OMG) also inhibited both the glucose and fructose uptakes.Therefore, the same transporter may mediate both glucose andfructose uptakes at lower concentrations; this hexose transportsystem differed from the sucrose and sorbitol transport systems. 1Research Fellow of the Japan Society for the Promotion of Science. 2Present address: Faculty of Agriculture, Tohoku University,1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981 Japan.  相似文献   

10.
An attempt has been made to separate constituents of marineseston samples: inorganic material, detritus and the algal species,by density gradient centrifugation, without affecting the physiologicalstate of the algae. A relatively inert gradient material, consistingof Percoll, salt and sucrose, was composed. Since the densitiesof detritus and algae as well as those of different algal speciesoften overlapped, only 10 of the 100 samples processed in thecourse of the year showed a reasonable separation. However,an enrichment with respect to one or more species was oftenachieved. Densities of eleven species of marine diatoms andof one dinoflagellate have been determined at different timesof the year. For eight diatom species and for the dinoflagellatethe following specific density ranges were established: Bidduiphiaaurita: 1.18–1.23 g cm–3, Biddulphia sinensis: 1.03–1.08g cm–3, Cerataulina bergonii: 1.03–1.06 g cm–3,Ditylum brightwellii: 1.07–1.13 g cm–3, Rhizosoleniadelicatula: 1.04–1.09 g cm–3, Skeletonema costatum:1.12–1.17 g cm–3, Streptotheca thamensis: 1.04–1.10g cm–3 , Thalassiosira rotula: 1.05–1.10 g cm–3,Peridinium sp.: 1.08–1.12 g cm–3. No seasonal variationin density was demonstrated. Gradients of different compositiondid not influence density measurements.  相似文献   

11.
The cell-membrane resistance (Rm) of Vigna hypocotyls was examined,and the effects of osmotic stress, ionic stress and IAA on Rmwere investigated. Rm decreased by 64 to 77% under osmotic stressin the presence of absorbable solutes (40 mM sorbitol, 15 mMKC1, 30 mM sucrose; or 40 mM sorbitol, 15 mM KC1, 30 mM sucroseplus 10–4 M IAA) or under ionic stress (50 mM NaCl or50 mM KC1). Rm was not changed by perfusion with 10–4M IAA. Therefore, the hyper-polarizations of the membrane potentialobserved in both cases should be ascribed totally to the activationof the electrogenic proton pump. Although Rm showed an increaseof 1.6 fold when the hypocotyls were subjected to osmotic stress(100 mM sorbitol or 100 mM sorbitol plus 10–4 M IAA),83.6% or 92.4% of the hyperpolarization of the membrane potential(Vpx was also the result of the activation of the pump. Theresults, calculated on the basis of the current source model,support the viewpoint that the hyperpolarization of the cellmembrane potential of Vigna hypocotyls under osmotic stress,ionic stress or in the presence of IAA is an expression of theactivation of the proton pump, and is not caused by an increasein Rm. 1 Present address: Researchers and Planners of Natural Environment, Yotsugi Bldg. (2F), 1-5-4 Horinouchi, Suginami-Ku, Tokyo,166 Japan 2 Present address: Graduate School of Integrated Science, YokohamaCity University, 22-2 Seto, Kanazawa-Ku, Yokohama, 236 Japan (Received February 14, 1991; Accepted July 24, 1991)  相似文献   

12.
The uptake of sorbitol into vacuoles from immature flesh ofapple fruit (Maluspumila Mill, var domestica Schneid.) was facilitatedby 10–6 M ABA, while such uptake into protoplasts wasnot stimulated. By contrast, the application of 10–5 MIAA facilitated uptake of sorbitol into protoplasts but didnot significantly into vacuoles. (Received July 17, 1990; Accepted December 25, 1990)  相似文献   

13.
Ionic fluxes, membrane potentials and permeabilities of theplasmalemma and tonoplast to K1, Na1 and Cl have beenexamined under steady-state conditions in the brackish-watercharophyte. Lamprothamnium papulosum. Cells were placed in oneof three aerated solutions of artificial seawater (500, 750,1050 mosmol kg–1). Mean vacuolar potentials were –175,–166 and –157 mV respectively in the three solutions.Compartmental analysis of fluxes indicated that sodium and potassiumwere moved from the cytoplasm to both the vacuole and the externalsolution against the electrochemical gradient, whereas inwardmovements of chloride from the external solution and the cytoplasmwere against the gradient. The Na/K ratio in the cytoplasm wasgreater than one. The low passive permeability of the tonoplastresulted in only a slow loss of ions, particularly K1 from thevacuole. These results are discussed in relation to osmoticregulation under steady-state conditions. Key words: Lamprothamnium, onic flux, ompartmental analysis  相似文献   

14.
Microsomal membranes from rye (Secale cereale L.) roots wereseparated by isopycnic sucrose density gradient centrifugation.The ion channels present in gradient fractions were assayedby reconstitution into planar 1-palmitoyl-2-oleoyl phosphatidylethanolaminebilayers (PLB) and the distributions of ion channel activitieswere compared with membrane markerenzyme activities. A numberof ion channel activities were observed and could be distinguishedon the combined bases of their conductance, selectivity, kineticsand pharmacology. A voltage-dependent maxi (498 pS) cation-channel,a voltage-dependent 199-pS cationchannel, 48-pS and 18-pS K+channels, and a 148-pS Cl channel (all unitary conductancesdetermined in asymmetrical cis trans 325:100mM KCl) colocalizedwith the plasma membrane marker-enzyme, vanadatesensitive ATPase.A weakly K +-selective (108 pS) channel, a 1249-pS cation-channeland a 98-pS K + channel colocalized with the tonoplast markerenzyme,nitrate-sensitive ATPase. A 706-pS K+ channel colocalized withthe expected distribution of intact plastids and a 38-pS Clchannel colocalized with either plastid or ER membranes. Themembrane location of several other channels including a hypervoltage-sensitivemaxi (497 pS) cation-channel, a 270-pS K+ channel, an 8-pS K+channel and a 4-pS K+ channel was equivocal, but they were tentativelyassigned to the Golgi. Thus, the plasma membrane and tonoplastorigin of ion channels previously characterized following theincorporation of plasma membrane prepared by aqueous-polymertwo-phase partitioning or tonoplast derived from isolated vacuolesinto PLB was confirmed and the ion channel complement of previouslyunassayed membranes was defined. This demonstrates the usefulnessof PLB in identifying and characterizing ion channels from plantcell membranes, in particular, those of membranes which areinaccessible to patch-clamp electrodes. Key words: Chloride (Cl) channel, potassium (K+) channel, planar lipid bilayer, root, rye, Secale cerealeL.  相似文献   

15.
Dark-adapted intact spinach chloroplasts exhibited two peaks,P and M1, at the early phase of fluorescence induction and atransient reduction of cytochrome f shortly after its initialphotooxidation and in parallel to the appearance of P. Analysisof the peak P and the transient reduction of cytochrome f indicatedthat electron transport in intact spinach chloroplasts was regulatedby light: electron transport was inactivated at the reducingside of photosystem I in the dark-adapted chloroplasts but rapidlyreactivated by illumination. The fluorescence peak M1 was correlatedto the proton gradient formed across the thylakoid membrane. Effects on P and transient reduction of cytochromef of NO2,3-phosphoglycerate (PGA) and oxalacetate (OAA), which can penetrateinto intact chloroplasts and accept electrons at different sitesafter photosystem I, were studied to determine the site of thelight regulation. NC2, which receives electrons fromreduced ferredoxin, markedly diminished both P and the transientreduction of cytochrome.f, whereas PGA and OAA, the reductionsof which are NADP-dependent, failed to affect the two transients.The ineffectiveness of PGA and OAA could not be attributed tothe dark inactivation of glyceraldehyde-3-phosphate and malicdehydrogenases, because dark-adapted chloroplasts still retainedsufficiently high levels of the enzyme activities. The resultsindicate that electron transport in intact spinach chloroplastsis regulated by light after ferredoxin but before NADP, i.e.,at the reducing terminal of the electron transport chain. (Received May 29, 1980; )  相似文献   

16.
Experiments were conducted to determine whether the Cl secretagogue, 1-ethyl-2-benzimidazolinone (EBIO), stimulates Cl transport in the rabbit conjunctival epithelium. For this study, epithelia were isolated in an Ussing-type chamber under short-circuit conditions. The effects of EBIO on the short-circuit current (Isc) and transepithelial resistance (Rt) were measured under physiological conditions, as well as in experiments with altered electrolyte concentrations. Addition of 0.5 mM EBIO to the apical bath stimulated the control Isc by 64% and reduced Rt by 21% (P < 0.05; paired data). Under Cl-free conditions, Isc stimulation using EBIO was markedly attenuated. In the presence of an apical-to-basolateral K+ gradient and permeabilization of the apical membrane, the majority of the Isc reflected the transcellular movement of K+ via basolateral K+ channels. Under these conditions, EBIO in combination with A23187 elicited nearly instantaneous 60–90% increases in Isc that were sensitive to the calmodulin antagonist calmidazolium and the K+ channel blocker tetraethyl ammonium. In the presence of an apical-to-basolateral Cl gradient and nystatin permeabilization of the basolateral aspect, EBIO increased the Cl-dependent Isc, an effect prevented by the channel blocker glibenclamide (0.3 mM). The latter compound also was used to determine the proportion of EBIO-evoked unidirectional 36Cl fluxes in the presence of the Cl gradient that traversed the epithelium transcellularly. Overall, EBIO activated apical Cl channels and basolateral K+ channels (presumably those that are Ca2+ dependent), thereby suggesting that this compound, or related derivatives, may be suitable as topical agents to stimulate fluid transport across the tissue in individuals with lacrimal gland deficiencies. Ussing chamber; short-circuit current; electrolyte transport; chloride secretagogue; potassium conductance; 1-ethyl-2-benzimidazolinone; 1,10-phenanthroline  相似文献   

17.
The Ionic Relations of Acetabularia mediterranea   总被引:3,自引:0,他引:3  
The concentrations of K+, Na+, and Cl in the cytoplasmand the vacuole of Acetabularia mediterranea have been measured,as have the vacuolar concentrations of SO4–– andoxalate. The electrical potential difference between externalsolution, and vacuole and cytoplasm has been measured. The resultsindicate that Cl and SO4–– are probably transportedactively into the cell, and that active transport of Na+ isoutwards. The results for K+ are equivocal. The fluxes of K+,Na+, Cl, and S04–– into the cell and theeffluxes of Na+ and Cl have been determined. The Clfluxes are extremely large. In all cases the plasmalemma isthe rate-limiting membrane for ion movement. A technique isdescribed for the preparation of large, completely viable cellfragments containing only cytoplasm, with no vacuole.  相似文献   

18.
The synthesis of glyceroglycolipids was studied in membraneand soluble fractions of Anabaena variabilis. The membrane fractionexhibited a high activity of UDPglucose: diacylglycerol glucosyltransferase,but practically no activity of UDPgalactose: diacylglycerolgalactosyltransferase. The glucosyltransferase activity wasmaximal at about pH 7.0 and dependent on Mg2+ The Michaelisconstant (Km) for UDPglucose was 45?10–6 M. The solublefraction catalyzed the incorporation of galactose from UDP galactoseinto digalactosyl diacylglycerol. These in vitro results werecompatible with the biosynthetic pathway of glyceroglycolipidsin this alga that we previously elucidated on the basis of tracerexperiments in vivo. 1 Present address: Department of Biology, Faculty of Science,University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan. (Received June 1, 1982; Accepted July 1, 1982)  相似文献   

19.
Ipomeamarone 15-hydroxylase activity was mainly recovered inthe pellet fraction between centrifugations at 10,000 and 100,000?gfrom a crude extract of Ceratocystis fimbriata-infected sweetpotato root tissue, whereas cinnamic acid 4-hydroxylase activitywas found between centrifugations at 300 and 10,000?g. Whenparticles in the crude extract were fractionated by sucrosedensity gradient centrifugation, the rough-surfaced microsomeswere distributed over a wide density range from 1.09 to 1.14g cm–3, judging from the distributions of protein, RNAand NADPH-cytochrome c reductase activity. Phosphorylcholine-glyceridetransferase activity was only in the lighter half of the microsomalfraction (density: 1.09–1.11 g cm–3). Ipomeamarone15-hydroxylase activity was found in heavier half of the microsomalfraction (density: 1.10–1.14 g cm–3). We proposethat this tissue has two rough-surfaced endoplasmic reticulumspecies, only one of which carries phosphorylcholine-glyceridetransferase, and that the cytochrome P-450 system is localizedon the species lacking the enzyme. Cinnamic acid 4-hydroxylaseactivity was mainly found in a fraction that had densities of1.17–1.19 g cm–3 and contained vesicular particlesof various sizes. 1 Present address: Laboratory of Food Hygienics, Faculty ofAgriculture, Kagawa University, Miki-cho, Kida-gun, Kagawa 761-07,Japan. (Received September 6, 1984; Accepted December 27, 1984)  相似文献   

20.
Glycolate oxidase (E.C. 1.1.3.1) was purified from spinach leaves (Spinacia oleracea). The molecular weight of the native protein was determined by sucrose density gradient centrifugation to be 290,000 daltons (13S), whereas that of the monomeric form was 37,000 daltons. The quaternary structure of the holoenzyme is likely to be octameric, analogous to pumpkin cotyledon glycolate oxidase [Nishimura et al, 1982]. The subcellular localization of the enzyme was studied using linear sucrose density gradient centrifugation, and it was found that glycolate oxidase activity is detectable in both leaf peroxisomal and supernatant fractions, but not in chloroplasts and mitochondria; the activity distribution pattern is essentially similar to that for catalase, a known leaf peroxisomal enzyme. Ouchterlony double diffusion and immunotitration analyses, demontrated that the rabbit antiserum against purified spinach leaf glycolate oxidase cross-reacted, identically, with the enzyme molecules present in two different subcellular fractions, i.e, the leaf peroxisome and supernatant fractions. It is thus concluded that the enzyme present in the supernatant is due to the disruption of leaf peroxisomes during the isolation, and hence glycolate oxidase is exclusively localized in leaf peroxisomes in spinach leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号