首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temporal and spatial formation and differentiation of axillary buds in developing shoots of mature eastern cottonwood (Populus deltoides) were investigated. Shoots sequentially initiate early vegetative, floral, and late vegetative buds. Associated with these buds is the formation of three distinct leaf types. In May of the first growing season, the first type begins forming in terminal buds and overwinters as relatively developed foliar structures. These leaves bear early vegetative buds in their axils. The second type forms late in the first growing season in terminal buds. These leaves form floral buds in their axils the second growing season. The floral bud meristems initiate scale leaves in April and begin forming floral meristems in the axils of the bracts in May. The floral meristems subsequently form floral organs by the end of the second growing season. The floral buds overwinter with floral organs, and anthesis occurs in the third growing season. The third type of leaf forms and develops entirely outside the terminal buds in the second growing season. These leaves bear the late vegetative buds in their axils. On the basis of these and other supporting data, we hypothesize a 3-yr flowering cycle as opposed to the traditional 2-yr cycle in eastern cottonwood.  相似文献   

2.
Costes E 《Annals of botany》2003,92(4):581-588
An investigation was made of the number of preformed organs in winter buds of 3-year-old reiterated complexes of the 'Granny Smith' cultivar. Winter bud content was studied with respect to bud position: terminal buds were compared on both long shoots and spurs according to branching order and shoot age, while axillary buds were compared between three zones (distal, median and proximal) along 1-year-old annual shoots in order 1. The percentage of winter buds that differentiated into inflorescences was determined and the flowers in each bud were counted for each bud category. The other organ categories considered were scales and leaf primordia. The results confirmed that a certain number of organs must be initiated before floral differentiation occurred. The minimum limit was estimated at about 15 organs on average, including scales. Total number of lateral organs formed was shown to vary with both bud position and meristem age, increasing from newly formed meristems to 1- and 2-year-old meristems on different shoot types. These differences in bud organogenesis depending on bud position, were consistent with the morphogenetic gradients observed in apple tree architecture. Axillary buds did not contain more than 15 organs on average and this low organogenetic activity of the meristems was related to a low number of flowers per bud. In contrast, the other bud categories contained more than 15 differentiated organs on average and a trade-off was observed between leaf and flower primordia. The ratio between the number of leaf and flower primordia per bud varied with shoot type. When the terminal buds on long shoots and spurs were compared, those on long shoots showed more flowers and a higher ratio of leaf to flower primordia.  相似文献   

3.
FULFORD  R. M. 《Annals of botany》1966,30(4):597-606
The course of development of spur buds on fruiting trees of‘biennial’ and ‘regular’ apple varietieswas followed throughout the season by dissection of successivesamples of buds and the effect on bud development of de-fruitingtrees at two different times in the season was recorded. In the biennially fruiting variety Miller's Seedling, the patternof bud development on fruiting trees was very similar to thatin buds on non-fruiting trees which failed to form flowers followingdefoliation, as were the number and sizes of leaves precedingthe bud in each instance. The failure to form flowers was associatedwith the occurrence of an 18-day plastochrone in buds, and itwas concluded that on fruiting trees it was not due to a competitiveeffect of the fruit for nutrients. This long plastochrone was not found in buds of de-blossomedtrees of Miller's Seedling, and in trees de-fruited later inthe season the buds immediately broke into a new flush of growthand at the same time the plastochrone was shortened. These resultssuggest that the long plastochrone was due to the inhibitoryeffect of fruit on the older primordia of the bud, an effectwhich did not occur until after the resting buds had begun toform. A phase with an 18-day plastochrone was also found inbuds of another biennial variety, Laxton's Superb, but not inthose of the regularly fruiting variety Sunset. Developing fruitlets of biennial varieties caused bud-scalesto form sooner and hastened their rate of development, possiblydue to changes induced in the levels of a gibberellin-like apexfactor in the buds. The rate of increase in number of bud-scalesin the bud appeared to depend upon the extent to which the budwas affected by the primary leaves of the flower cluster andthose of other clusters.  相似文献   

4.
Custard apple has cryptic axillary buds, hidden from view by the base of the petiole. This has led to confusion about custard apple’s flowering habit. Flowering only occurs during early branch development, and can be forced at any time of the growing season simply by removing leaves. Here, we show that flowering is terminal, not extra-axillary, and that the apparent continuation of the main stem beyond the flower is, instead, a sympodial branch. Secondary (including sympodial) branching only occurs during early branch development. Thereafter, axillary bud release is inhibited by the subtending leaf. Here, we show that summer tip-pruning of all branches arrests canopy development until the following spring owing to this inhibition. Although summer tip-pruning prevented new vegetative growth in the canopy, fruit size decreased relative to the control trees by ca. 23%. The reason for this decrease was probably related to increased carbon limitation to growth given that dawn water soluble and total non-structural carbohydrate concentrations were lower in the tip-pruned trees. Thus, it appears that the reduced competition between fruit development and new vegetative growth in the tip-pruned trees was more than matched by lower photosynthetic capacity in the arrested canopy. Trees grown inside a shade-house were more vigorous than those grown outside. The difference in vigour had little effect on fruit size.  相似文献   

5.
Terminal meristems of Pisum sativum (garden pea) transit from vegetative to inflorescence development, and begin producing floral axillary meristems. Determination for inflorescence development was assessed by culturing excised buds and meristems. The first node of floral initiation (NFI) for bud expiants developing in culture and for adventitious shoots forming on cultured meristems was compared with the NFI of intact control buds. When terminal buds having eight leaf primordia were excised from plants of different ages (i.e., number of unfolded leaves) and cultured on 6-benzylaminopurine and kinetin-supplemented medium, the NFI was a function of the age of the source plant. By age 3, all terminal buds were determined for inflorescence development. Determination occurred at least eight nodes before the first axillary flower was initiated. Thus, the axillary meristems contributing to the inflorescence had not formed at the time the bud was explanted. Similar results were obtained for cultured axillary buds. In addition, meristems excised without leaf primordia from axillary buds three nodes above the cotyledons of age-3 plants gave rise to adventitious buds with an NFI of 8.3 ±0.3 nodes. In contrast seed-derived plants had an NFI of 16.5 ±0.2. Thus cells within the meristem were determined for inflorescence development. These findings indicate that determination for inflorescence development in P. sativum is a stable developmental state, separable from determination for flower development, and occurring prior to initiation of the inflorescence at the level of meristems.  相似文献   

6.
In Pharbitis seedlings, aging is associated with definite trends in the pattern of flowering of the axillaries: 1) the locus of maximum flowering is displaced continuously upward, 2) there is a continuous loss of responsiveness to induction from the base of the plant, upward, 3) flowering of the axillaries is suppressed in general when the terminal bud fails to flower, and 4) flowering at the distal nodes regresses when the terminal bud fails to flower. Phenomena 1 and 2 start at the base of the plant and move progressively upward, whereas 3 and 4 are tied to the possibly rhythmic responses of the terminal buds to floral induction, with aging. Buds at axils that form after induction are capable of flowering. Buds at nodes that flower maximally range in development from those not visible with a stereomicroscope to those with enlarging apices ready to form the first leaf primordia at the time of induction. Axillaries that have formed leaf primordia fail to flower in response to one inductive night.  相似文献   

7.
8.
The Morphogenesis of Apple Buds: I. The Activity of the Apical Meristem   总被引:4,自引:2,他引:2  
FULFORD  R. M. 《Annals of botany》1965,29(1):167-180
The mechanism controlling the production of primordia by theapical meristem of apple buds has been studied by means of defoliationexperiments and the dissection of buds. It is shown that theapical meristem of the bud passes through a series of comparativelystable phases of activity, changing relatively abruptly fromone phase to another. The relation of the activity of the apicalmeristem to the development of the bud and foliage is discussed,and it is concluded that the rate of production of primordiais controlled by the younger leaf primordia in the bud, whichmay themselves be controlled by the foliage.  相似文献   

9.
The flowering response of Owari Satsuma mandarin ( Citrus unshiu Marc) to low temperature treatments has been determined using potted trees and in vitro bud cultures. In potted trees the chilling treatments released bud dormancy and enhanced both sprouting and flowering, but these two responses could not be separated. However, bud cultures showed no dormancy, and a specific effect of low temperature on flower induction was demonstrated. Low temperature appears to have a dual effect, releasing bud dormancy and inducing flowering. Potential flower buds have a deeper dormancy than vegetative buds, and the first stages of flower initiation seem to occur before the winter rest period.  相似文献   

10.
A mature, quiescent, primary axillary bud on the main axis of a flowering Nicotiana tabacum cv. Wisconsin 38 plant, when released from apical dominance and before forming its terminal flower, produced a number of nodes which was dependent upon its position on the main axis. Each bud produced about one more node than the next bud above it. The total number of nodes produced by an axillary bud was about 6 to 8 greater than the number of nodes present above this bud on the main axis. At anthesis of the terminal flower on the main axis, mature, quiescent, primary axillary buds had initiated 7 to 9 leaf primordia while secondary axillary buds, sometimes present in addition to the primary ones, had initiated 4 to 5 leaf primordia. When permitted to grow out independently, primary and secondary axillary buds located at the same node on the main axis produced the same number of nodes before forming their terminal flowers. In contrast, immature primary axillary buds which had produced only 5 leaf primordia and which were released from apical dominance prior to the formation of flowers on the main axis produced only as many nodes as would be produced above them on the main axis by the terminal meristem, i.e., “extra” nodes were not produced. Therefore, it is the physiological status of the plant and not the number of nodes on the bud at the time of release from apical dominance that influenced the node-counting process of a bud. When two axillary buds were permitted to develop on the same main axis, each produced the same number of nodes as single axillary buds developing at these nodes. Thus, the counting process in an axillary bud of tobacco is independent of other buds. Axillary buds on main axes of plants that had been placed horizontally produced the same number of nodes as identically-positioned axillary buds on vertical plants, indicating that gravity does not play a major role in the counting, by an axillary bud, of the nodes on the main axis.  相似文献   

11.
Morphogenesis of floral structures, dynamics of reproductive development from floral initiation until fruit maturation, and leaf turnover in vegetative short-stem shoots of Saxifraga oppositifolia were studied in three consecutive years at an alpine site (2300 m) and at an early- and late-thawing subnival site (2650 m) in the Austrian Alps. Marked differences in the timing and progression of reproductive and vegetative development occurred: individuals of the alpine population required a four-month growing season to complete reproductive development and initiate new flower buds, whereas later thawing individuals from the subnival sites attained the same structural and functional state within only two and a half months. Reproductive and vegetative development were not strictly correlated because timing of flowering, seed development, and shoot growth depended mainly on the date of snowmelt, whereas the initiation of flower primordia was evidently controlled by photoperiod. Floral induction occurred during June and July, from which a critical day length for primary floral induction of about 15 h could be inferred. Preformed flower buds overwinter in a pre-meiotic state and meiosis starts immediately after snowmelt in spring. Vegetative short-stem shoots performed a full leaf turnover within a growing season: 16 (+/-0.8 SE) new leaves per shoot developed in alpine and early-thawing subnival individuals and 12 (+/-1.2 SE) leaves in late-thawing subnival individuals. New leaf primordia emerged continuously from snowmelt until late autumn, even when plants were temporarily covered with snow. Differences in the developmental dynamics between the alpine and subnival population were independent of site temperatures, and are probably the result of ecotypic adaptation to differences in growing season length.  相似文献   

12.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

13.
Pear bud metabolism: seasonal changes in glucose utilization   总被引:1,自引:1,他引:0       下载免费PDF全文
Utilization of glucose, uracil and valine by flower and leaf buds of seedling pear trees (Pyrus calleryana Decne.) from the time of flower bud initiation to flowering was investigated. A very high rate of glucose utilization through the pentose phosphate pathway was observed throughout the development of buds. There was no difference in the type of glucose metabolism between flower and leaf buds except immediately before flowering, when the metabolism in flower buds was shifted toward the glycolytic pathway. Such a shift did not occur in leaf buds. The incorporation of uracil and valine into the nucleic acid and protein fraction of buds, respectively, was high throughout bud development, perhaps indicating a high rate of turnover in the resting buds. Incorporation of both compounds decreased when buds started to expand prior to flowering.  相似文献   

14.
脱落酸在植物花发育过程中的作用   总被引:3,自引:0,他引:3  
植物激素脱落酸(ABA)对植物的生长发育具有多方面的调节作用,比如种子休眠、萌发,营养生长,环境胁迫反应等。大量研究显示,ABA也参与了植物的成花调控。影响植物成花调控的环境因子,包括光周期变化、春化作用、干旱等均会导致植物体内ABA代谢的变化。本文从调控植物开花的4条主要途径与植物体内ABA代谢变化之间的相互关系,花芽分化时期ABA在植物叶芽和花芽中的动态分布以及离体培养条件下ABA对花芽分化的影响等方面总结了ABA与植物花发育这一领域的最新研究进展。对ABA在植物成花诱导和花发育中的作用进行了综合分析。  相似文献   

15.
The inhibitory effect of gibberellic acid on flowering in Citrus   总被引:3,自引:1,他引:2  
The application of gibberellic acid (GA3) at any time from early November until bud sprouting, resulted in a significant inhibition of flowering in the sweet orange [ C. sinensis (L.) Osbeck] and the Satsuma ( C. unshiu Marc.) and Clementine ( C. reticulata Blanco) mandarins. Two response peaks were evident: the first occurred when the application was timed to the translocation of an unknown flowering signal from the leaves to the buds. The second occurred during bud sprouting, at the time the flower primordia were differentiating. From the pattern of flowering, it appears that the mechanism of inhibition was similar irrespective of the timing of GA3 application. There was an initial reduction in bud sprouting affecting selectively those buds originating leafless inflorescences. An additional inhibition resulted in a reduction in the number of leafy inflorescences with an increase in the number of vegetative shoots, suggesting the reversion of a floral to a vegetative apex. The inhibited buds sprouted readily in vitro but invariably vegetative shoots were formed. A continuous influence of the sustaining branch is necessary to keep the flowering commitment of the buds; irreversible commitment occurs when the petal primordia are well differentiated.  相似文献   

16.
The suppression of apical growth and radial trunk growth in trees under shade is a key factor in the competition mechanism among individuals in natural and artificial forests. However, the timing of apical and radial growth suppression after shading and the physiological processes involved have not been evaluated precisely. Twenty-one Abies sachalinensis seedlings of 5-years-old were shaded artificially under a relative light intensity of 5% for 70 days from August 1, and the histological changes of the terminal bud and terminally lateral bud of terminal leader and the cambial zone of the trunk base were analyzed periodically. In shade-grown trees, cell death of the leaf primordia in a terminal bud of terminal leader was observed in one of the three samples after 56 and 70 days of shading, whereas the leaf primordia in a terminal bud of terminal leader in all open-grown trees survived until the end of the experiment. In addition, the leaf primordia of the terminally lateral buds of terminal leader retained their cell nuclei until the end of the experiment. No histological changes were observed in the cambial cells after shading, but the shade-grown trees had less cambial activity than the open-grown trees through the experiment. Strong shading appeared to inhibit the formation and survival of cells in the terminal bud of terminal leader rather than the terminally lateral buds of terminal leader and the cambium. The suppression of the terminal bud growth and elongation of the surviving lateral buds would result in an umbrella-shaped crown under shade.  相似文献   

17.
The prostrate rhizome of Butomus umbellatus produces branch primordia of two sorts, inflorescence primordia and nonprecocious vegetative lateral buds. The inflorescence primordia form precociously by the bifurcation of the apical meristem of the rhizome, whereas the non-precocious vegetative buds are formed away from the apical meristem. The rhizome normally produces a branch in the axial of each foliage leaf. However, it is unclear whether the rhizome is a monopodial or a sympodial structure. Lateral buds are produced on the inflorescence of B. umbellatus either by the bifurcation or trifurcation of apical meristems. The inflorescence consists of monochasial units as well as units of greater complexity, and certain of the flower buds lack subtending bracts. The upright vegetative axis of Limnocharis flava has sympodial growth and produces evicted branch primordia solely by meristematic bifurcation. Only certain leaves of the axis are associated with evicted branch primordia and each such primordium gives rise to an inflorescence. The flowers of L. flava are borne in a cincinnus and, although the inflorescence is simpler than that of Butomus umbellatus, the two inflorescences appear to conform to a fundamental body plan. The ultimate bud on the inflorescence of Limnocharis flava always forms a vegetative shoot, and the inflorescence may also produce supernumerary vegetative buds. Butomus umbellatus and Limnocharis flava exhibit a high degree of mirror image symmetry.  相似文献   

18.
Shortly after flower differentiation, Rhododendron flower developmentis interrupted by a rest period. The results reported here showthat the onset and duration of rest depended upon the presenceof the flower bud scales. When the scales were removed beforethe onset of rest, the flowers continued to elongate and attainedanthesis. Intact buds stopped growing and remained in rest forat least four months. Scale removal after the onset of restterminated the rest period, though there was a lag phase beforethe flowers began to elongate. The duration of the lag phasewas related to the time of scale removal. The scales preventedflower development in situ, on detached stems and in vitro.Theresults further show that the rest period of each flower budwas independent of the rest period of adjacent flower buds andthat the resting terminal flower buds correlatively inhibitedthe growth of the lateral vegetative apices. The correlativeinhibition was eliminated by removing the terminal flower budor by breaking the rest period of the flower bud.  相似文献   

19.
The study was focused on changes of anatomical and histochemical parameters of buds of 4-year-old Norway spruce (Picea abies L. Karst) trees subjected to simulated acid rain (SAR). Solutions of pH 2.9 and 3.9 were applied by spraying on shoot and/or by watering for two years. No macroscopic changes of buds or needles were observed in connection with SAR application and the only induced change was 2-week earlier onset of bud break in all treated variants compared to the control. Two-year treatment caused decrease in number of leaf primordia and increase in number of living bud scales in treated dormant buds while these parameters remained unchanged in the control buds. Treatments with solution of pH 2.9 caused decrease of flatness of bud apical meristem during the vegetative season. Increased activity of non-specific esterase in treated buds occurred during dormancy and bud break and the enhanced accumulation of phenolic compounds was detected at the beginning of shoot growth. Changes in histochemical parameters of bud tissues were induced mainly by spraying of shoots and can thus be qualified as primary damage.  相似文献   

20.
The initiation and growth of axillary bud primordia in relationto the growth of their subtending leaves was observed at theapices of three clones (A. B. and C) of white clover grown invarious combinations of photoperiod and temperature. ClonesA, B, and C flower in response to low temperatures, and clonesA and C, but not B, in response to a transfer from short tolong photoperiods at higher temperatures. The rate of growth of buds and leaves from node to node waslittle influenced by the various treatments imposed, but theinitiation of axillary bud primordia relative to the apicaldome was stimulated in conditions conducive to flowering. The number of budless leaf primordia at the apex ranged froma maximum average of 2.25 at 20° C. to approximately o.8oat 10° C. in all three clones. At the higher temperatures,runners possessed 2.06 budless nodes in short days but only1.12 in long days in clones A and C. In clone B, daylength didnot influence bud initiation at the higher temperature. The results provide evidence of the homology between vegetativeand repro-ductive axillary bud primordia. It is suggested thatflowering is brought about by the removal of an inhibition withinthe apex which leads to the precocious initiation of axillarybud primordia. Following the initiation of axillary bud primordia, the resultsshow their growth to be uninhibited for 6-7 plastochrons. Rapidinflorescence development occurs during this phase. Apical dominancehas no apparent influence on vegetative axillary buds untilthe onset of rapid petiole elongation in their subtending leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号