首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme-linked immunosorbent assay (ELISA) is a common tool to test human sera on an antibody reaction against a specific antigen. The 60-kDa Ro/SS-A antigen for autoantibodies can be found in sera from systemic lupus erythematosus (SLE) patients. As in the case of 60-kDa Ro/SS-A, antigens used in ELISAs are recombinantly expressed in Escherichia coli and time-consuming purification steps are needed to get the proteins. To avoid these disadvantages, 60-kDa Ro/SS-A was expressed on the surface of E. coli using autodisplay, an efficient surface display system. Cells displaying 60-kDa Ro/SS-A on the surface were applied as an antigen source instead of the purified antigen. In total, 39 patients and 30 control sera were screened on a 60-kDa Ro/SS-A antibody reaction. To eliminate antibodies against native E. coli, human sera were preabsorbed with E. coli cells prior to the assay. The new ELISA protocol (surface display ELISA [SD-ELISA]) using E. coli with autodisplayed 60-kDa Ro/SS-A showed a sensitivity of 86.67% and a specificity of 83.33% by a cutoff value of 0.28. Our results show that autodisplay provides simple, rapid, and cheap access to human antigens for an ELISA to screen human sera against specific antibody reactions.  相似文献   

2.
The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-d-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.  相似文献   

3.
Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer.  相似文献   

4.
Physiology of F-Pilin Synthesis and Utilization   总被引:9,自引:5,他引:4       下载免费PDF全文
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to study the synthesis and turnover of F-pilin in membrane preparations of Escherichia coli K-12 under conditions which have been reported to affect the production of F-pili. Incorporation of [35S]methionine into membrane F-pilin by cells in log phase was barely detectable at 25°C, but increased with temperature. The labeled pilin band was prominent in membranes from 37°C cultures and even more prominent if the growth temperature was raised to 42°C. The appearance of other tra products in the membranes was similarly temperature dependent. In cultures grown in glucose minimal medium at 37°C, the relative amount of membrane pilin and traT product synthesis remained unchanged from early log phase through early stationary phase; provision of glycerol or arabinose as a substitute carbon source had no obvious effect. Turnover of traT product and membrane F-pilin, as assessed in an Flac tra mutant strain which is incapable of elaborating pili, was not rapid. Both traT product and pilin subunits labeled in mid-log phase cells were still apparent in the membranes after growth of the cells to stationary phase. The relative amount of labeled pilin decreased with prolonged incubation in stationary phase, but the relative amount of traT product did not decrease even after the culture was incubated for 24 h. When wild-type Flac piliated cells were used, a similar result was obtained, but in this case, loss of F-pilin from the preparations could be acclerated by blending the cells. Although intermittent blending during culture growth caused a slow depletion of the labeled pilin pool, continuous blending resulted in the rapid disappearance of this pool from our preparations. Loss of other membrane polypeptides was not accelerated by our blending procedure, and blending did not affect the turnover of the pilin pool of the Flac tra mutant. Our data are consistent with a model in which pilin subunits are assembled transiently into pili, conserved by retraction, and made available for subsequent reassembly. Growth in 0.01% sodium dodecyl sulfate did not accelerate loss of pilin from the Flac strain compared with the Flac tra strain, and we suggest that in the presence of sodium dodecyl sulfate at this concentration, F-pili are not elaborated from cell surfaces.  相似文献   

5.
6.
Marine bacteria from aquaculture areas with industrial use of quinolones have the potential to pass quinolone resistance genes to animal and human pathogens. The VPA0095 gene, related to the quinolone resistance determinant qnrA, from clinical isolates of epidemic Vibrio parahaemolyticus conferred reduced susceptibility to quinolone after cloning into Escherichia coli K-12 either when acting alone or synergistically with DNA gyrase mutations. In addition, a plasmid-mediated quinolone resistance gene from marine bacteria, aac(6′)-Ib-cr, was identical to aac(6′)-Ib-cr from urinary tract isolates of E. coli, suggesting a recent flow of this gene between these bacteria isolated from different environments. aac(6′)-Ib-cr from E. coli also conferred reduced susceptibility to quinolone and kanamycin when cloned into E. coli K-12.  相似文献   

7.
A simple, effective method of unlabeled, stable gene insertion into bacterial chromosomes has been developed. This utilizes an insertion cassette consisting of an antibiotic resistance gene flanked by dif sites and regions homologous to the chromosomal target locus. dif is the recognition sequence for the native Xer site-specific recombinases responsible for chromosome and plasmid dimer resolution: XerC/XerD in Escherichia coli and RipX/CodV in Bacillus subtilis. Following integration of the insertion cassette into the chromosomal target locus by homologous recombination, these recombinases act to resolve the two directly repeated dif sites to a single site, thus excising the antibiotic resistance gene. Previous approaches have required the inclusion of exogenous site-specific recombinases or transposases in trans; our strategy demonstrates that this is unnecessary, since an effective recombination system is already present in bacteria. The high recombination frequency makes the inclusion of a counter-selectable marker gene unnecessary.  相似文献   

8.
9.
10.

Background

Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug''s chemical structure and a bacterium''s cellular network affect the types of mutations acquired.

Methodology/Principal Findings

To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli''s intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance.

Conclusions/Significance

Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.  相似文献   

11.
12.
Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.  相似文献   

13.
A normally stable gene of Escherichia coli was converted into a transposable element. A bacterial strain was constructed in which the malK gene was flanked on each side by the transposable element Tn5. The resulting Tn5-malK+-Tn5 structure (Tn651) became a transposable element with properties very similar to those of Tn5 itself. Tn651 transposes into regions of both the E. coli chromosome and bacteriophage lambda and is able to induce mutations. Transposition of Tn651 does not require the product of recA. Based on a physical analysis of lambda Tn651 DNA it is shown that the two Tn5s flanking the malK gene are in inverted orientation. In these experiments a new derivative of bacteriophage lambda is used that can accept a 14 kilobase insertion in vivo and still yield a plaque-forming transducing particle.  相似文献   

14.
Summary While insertion sequences (IS) in Escherichia coli transpose frequently to generate spontaneous insertion mutants, such mutations are rare in Salmonella typhimurium: the only documented insertion mutation is a hisD mutation caused by the Salmonella-specific IS element IS200. To obtain more examples of IS200 insertion mutations and to seek additional types of IS elements in Salmonella, we selected and characterized 422 independent, spontaneous His mutants and some 2100 additional mutants that are not necessarily independent. None of the mutants showed the absolute polar effect characteristic of insertion mutations or the reversion properties characteristic of insertions (low spontaneous reversion frequency and no reversion induction by chemical mutagens). A few mutants, showing a high spontaneous reversion frequency, were screened physically. No insertion mutations were found. Thus insertion mutations appear to be rare in S. typhimurium, in strong contrast to E. coli and despite the possession in Salmonella of at least one type of insertion element (IS200). These results suggest that in Salmonella transposition of the endogenous elements has been controlled. The transposition ability of the elements may have been reduced or favored target sites removed from the host genome.  相似文献   

15.
The insect midgut cadherin serves as an important receptor for the Cry toxins from Bacillus thuringiensis (Bt). Variation of the cadherin in insect populations provides a genetic potential for development of cadherin-based Bt resistance in insect populations. Sequence analysis of the cadherin from the cabbage looper, Trichoplusia ni, together with cadherins from 18 other lepidopterans showed a similar phylogenetic relationship of the cadherins to the phylogeny of Lepidoptera. The midgut cadherin in three laboratory populations of T. ni exhibited high variability, although the resistance to Bt toxin Cry1Ac in the T. ni strain is not genetically associated with cadherin gene mutations. A total of 142 single nucleotide polymorphisms (SNPs) were identified in the cadherin cDNAs from the T. ni strains, including 20 missense mutations. In addition, insertion and deletion polymorphisms (indels) were also identified in the cadherin alleles in T. ni. More interestingly, the results from this study reveal that differential splicing of mRNA also occurs in the cadherin gene expression. Therefore, variation of the midgut cadherin in insects may not only be caused by cadherin gene mutations, but could also result from alternative splicing of its mRNA regulated by factors acting in trans. Analysis of cadherin gene alleles in F2, F3 and F4 progenies from the cross between the Cry1Ac resistant and the susceptible strain after consecutive selections with Cry1Ac for three generations showed that selection with Cry1Ac did not result in an increase of frequencies of the cadherin alleles originated from the resistant strain.  相似文献   

16.
TnpX is a site-specific recombinase responsible for the excision and insertion of the transposons Tn4451 and Tn4453 in Clostridium perfringens and Clostridium difficile, respectively. Here, we exploit phenotypic features of TnpX to facilitate genetic mutagenesis and complementation studies. Genetic manipulation of bacteria often relies on the use of antibiotic resistance genes; however, a limited number are available for use in the clostridia. The ability of TnpX to recognize and excise specific DNA fragments was exploited here as the basis of an antibiotic resistance marker recycling system, specifically to remove antibiotic resistance genes from plasmids in Escherichia coli and from marked chromosomal C. perfringens mutants. This methodology enabled the construction of a C. perfringens plc virR double mutant by allowing the removal and subsequent reuse of the same resistance gene to construct a second mutation. Genetic complementation can be challenging when the gene of interest encodes a product toxic to E. coli. We show that TnpX represses expression from its own promoter, PattCI, which can be exploited to facilitate the cloning of recalcitrant genes in E. coli for subsequent expression in the heterologous host C. perfringens. Importantly, this technology expands the repertoire of tools available for the genetic manipulation of the clostridia.  相似文献   

17.
Mutator mutations in the mutS gene induced by the insertion of phage Mu or the transposable resistance elements Tn5 or Tn10 and those in the mutL gene induced by Tn5 and T10 gave mutagenic activities similar to that of the previously described mutS3 and mutL25 mutations. Various combinations of mutS::Tn5,mutL::Tn5, uvrE156, and the deletion mutation δmutH2 did not produce an additive effect. This supports the idea that the products of these genes function in the same pathway of error correction during DNA synthesis.  相似文献   

18.
Lactoperoxidase is an enzyme that contributes to the antimicrobial defense in secretory fluids and that has attracted interest as a potential biopreservative for foods and other perishable products. Its antimicrobial activity is based on the formation of hypothiocyanate (OSCN) from thiocyanate (SCN), using H2O2 as an oxidant. To gain insight into the antibacterial mode of action of the lactoperoxidase enzyme system, we generated random transposon insertion mutations in Escherichia coli MG1655 and screened the resultant mutants for an altered tolerance of bacteriostatic concentrations of this enzyme system. Out of the ca. 5,000 mutants screened, 4 showed significantly increased tolerance, and 2 of these had an insertion, one in the waaQ gene and one in the waaO gene, whose products are involved in the synthesis of the core oligosaccharide moiety of lipopolysaccharides. Besides producing truncated lipopolysaccharides and displaying hypersensitivity to novobiocin and sodium dodecyl sulfate (SDS), these mutants were also shown by urea-SDS-polyacrylamide gel electrophoresis analysis to have reduced amounts of porins in their outer membranes. Moreover, they showed a reduced degradation of p-nitrophenyl phosphate and an increased resistance to ampicillin, two indications of a decrease in outer membrane permeability for small hydrophilic solutes. Additionally, ompC and ompF knockout mutants displayed levels of tolerance to the lactoperoxidase system similar to those displayed by the waa mutants. These results suggest that mutations which reduce the porin-mediated outer membrane permeability for small hydrophilic molecules lead to increased tolerance to the lactoperoxidase enzyme system because of a reduced uptake of OSCN.  相似文献   

19.
The glycopeptide antibiotic vancomycin blocks cell wall synthesis in Escherichia coli only when it can reach its target site in the periplasm. In vivo, sensitivity to vancomycin is enhanced in the presence of the hemolysin (hly) determinant of E. coli or its translocator portion hlyBD. Two different mutations in hlyD alter the cell's susceptibility to vancomycin: mutations in the tolC-homologous region of hlyD increase vancomycin resistance, whereas mutations at the 3′-terminus of hlyD lead to hypersensitivity to vancomycin and to the accumulation of large periplasmic and cytoplasmic pools of this antibiotic in E. coli. These effects are only observed in the presence of functional HlyB and TolC, the two other components of the hemolysin secretion machinery. A defect in TolC causes hyperresistance to vancomycin, even when present together with a mutant HlyD protein which in the presence of TolC renders E. coli hypersensitive to vancomycin. Lipid bilayer experiments in vitro revealed specific interactions between TolC and vancomycin or HlyD protein. Second-site suppressor mutations in hlyD and hlyB were obtained, which abolish the hypersensitive phenotype caused by the 3′-terminal mutations in hlyD. Our results are compatible with the idea that (a) TolC, together with the TolC-homologous part of HlyD, forms a pore in the outer membrane through which hemolysin is released and vancomycin taken up; and (b) the C-terminal sequence of HlyD interacts with periplasmic loop(s) of HlyB to form a closed channel spanning the periplasm.  相似文献   

20.
The objective of this study was to determine the genomic changes that underlie coevolution between Escherichia coli B and bacteriophage T3 when grown together in a laboratory microcosm. We also sought to evaluate the repeatability of their evolution by studying replicate coevolution experiments inoculated with the same ancestral strains. We performed the coevolution experiments by growing Escherichia coli B and the lytic bacteriophage T3 in seven parallel continuous culture devices (chemostats) for 30 days. In each of the chemostats, we observed three rounds of coevolution. First, bacteria evolved resistance to infection by the ancestral phage. Then, a new phage type evolved that was capable of infecting the resistant bacteria as well as the sensitive bacterial ancestor. Finally, we observed second-order resistant bacteria evolve that were resistant to infection by both phage types. To identify the genetic changes underlying coevolution, we isolated first- and second-order resistant bacteria as well as a host-range mutant phage from each chemostat and sequenced their genomes. We found that first-order resistant bacteria consistently evolved resistance to phage via mutations in the gene, waaG, which codes for a glucosyltransferase required for assembly of the bacterial lipopolysaccharide (LPS). Phage also showed repeatable evolution, with each chemostat producing host-range mutant phage with mutations in the phage tail fiber gene T3p48 which binds to the bacterial LPS during adsorption. Two second-order resistant bacteria evolved via mutations in different genes involved in the phage interaction. Although a wide range of mutations occurred in the bacterial waaG gene, mutations in the phage tail fiber were restricted to a single codon, and several phage showed convergent evolution at the nucleotide level. These results are consistent with previous studies in other systems that have documented repeatable evolution in bacteria at the level of pathways or genes and repeatable evolution in viruses at the nucleotide level. Our data are also consistent with the expectation that adaptation via loss-of-function mutations is less constrained than adaptation via gain-of-function mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号