首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Black widow spider is one of the most poisonous spiders in the world. Up to now, there have been few systematic analyses of the spider venom components, and the mechanism of action of the venom has not been completely understood. In this work, we employed combinative proteomic strategy to analyze the venom collected from living adult spider Latrodectus tredecimguttatus by electrical stimulation. The experiments demonstrated that the venom is primarily composed of high molecular weight proteins and has high abundance proteins around 100 kDa. The content of peptides and proteins with low molecular weight is low. A total of 75 nonredundant venom proteins with distinct function were unambiguously identified. Besides the known black widow spider venom proteins including latrotoxins, a variety of hydrolases and other proteins with special activity were found in the venom, such as proteinase, phospholipase, phosphatase, nuclease, fucolectin, venom allergen antigen 5-like protein and trypsin inhibitor, and so on. Their possible biological actions and relationship with latrodectism were discussed. The results help to understand the complexity and action mechanism of L. tredecimguttatus venom.  相似文献   

2.
Red blood cell lysis induced by the venom of Loxosceles reclusa, the brown recluse spider, may be related to the hemolytic anemia observed in several cases of spider envenomation. These investigations demonstrate that the venom of the brown recluse spider contains a calcium-dependent, heat-labile hemolysin of molecular weight approximately 19,000. The pH optimum for the hemolytic reaction was 7.1, and the optimum calcium concentration for venom-induced lysis was observed within the range of 6 to 10 mm. Sheep red blood cells were more susceptible to the spider hemolysin than human red blood cells, although both types exhibited appreciable lysis. Digestion of sheep red blood cell membranes with partially purified venom lysin resulted in degradation of the sphingomyelin component. However, reaction of the membranes with the venom lysin produced no release of water-soluble phosphate, and no free fatty acids were generated. These results indicate that the sphingomyelin-degrading activity of the venom is not a phospholipase C- or a phospholipase A2-type activity. Sphingomyelin was employed as substrate for the venom hemolysin, and the organic and aqueous fractions of the reaction mixtures were analyzed by thin-layer chromatography. Analysis of the organic fraction revealed a phosphate-containing product with the solubility and chromatographic characteristics of N-acylsphingosine phosphate (ceramide phosphate), and analysis of the aqueous fraction demonstrated the presence of choline. The isolation and identification of these products indicate that the sphingomyelin of the red cell membrane is hydrolyzed by a sphingomyelinase D-type activity expressed by the partially purified venom hemolysin. A close correspondence between the hemolytic and sphingomyelinase D activities was observed when the partially purified hemolysin was further characterized in polyacrylamide gel electrophoresis at pH 8.3 and pH 4.9. The hemolytic and sphingomyelinase activities were coincident within the electrophoretic pattern at both pHs. The results presented demonstrate conclusively a direct lytic action of brown recluse venom upon red blood cells and report for the first time the presence of sphingomyelinase D in spider venom.  相似文献   

3.
Venom from two species of spider has been tested on the locust glutamatergic nerve-muscle system. The neurally-evoked twitch contraction of locust metathoracic retractor unguis muscle was abolished in the presence of venom and only slowly recovered following its removal. The twitch inhibition onset rate was venom concentration and stimulation frequency dependent. The mechanical response of this muscle to L-glutamate was also inhibited by spider venom. Complete abolition of the potential evoked by ionophoresis of L-glutamate to excitatory junctions on locust metathoracic extensor tibiae muscle was obtained with low concentrations of venom and recovery on washing was either slow and incomplete or not evident. The ionophoretic studies and twitch contraction studies indicate that the venom acts only when the glutamate receptor channel complex is activated by agonist. This conclusion is supported by data of the effects of venom on the voltage clamped excitatory postsynaptic current recorded from locust extensor tibiae muscle. Preliminary attempts to identify and isolate the active principles in these spider venoms indicate that activity is restricted to a molecule(s) of low (less than 1000 dalton's) molecular weight.  相似文献   

4.
It has proven difficult to identify those spiders which cause necrotic lesions. In an effort to design a simple, inexpensive screening method for identifying spiders with necrotizing venoms, we have examined the venom gland homogenates of a variety of spider species for their ability to cause red blood cell lysis. Those venoms which were positive were further examined for the presence of sphingomyelinase D, and their ability to evoke necrotic lesions in the skin of rabbits. Sphingomyelinase D is known to be the causative agent of necrosis and red blood cell lysis in the venom of the brown recluse spider (Loxosceles reclusa), and our assumption was that this would be the same agent in other spider venoms as well. This did not prove to be the case. Of 45 species examined, only the venom of L. reclusa and Cheiracanthium mildei lysed sheep red blood cells. Unlike L. reclusa venom, however, C. mildei venom did not possess sphingomyelinase D nor did it cause necrotic lesions in the skin of rabbits. We present evidence suggesting that a phospholipase A2 is the hemolytic agent in C. mildei venom.  相似文献   

5.
Toxin phospholipases-D present in the venom of Loxosceles spiders is the principal responsible for local and systemic effects observed in the loxoscelism. In this study, we describe the cloning, expression, functional evaluation, and potential biotechnological application of cDNAs, which code for two new phospholipase D isoforms, LIPLD1 and LIPLD2, of the spider Loxosceles laeta. The recombinant protein rLIPLD1 had hydrolytic activity on sphingomyelin and in vitro hemolytic activity on human red blood cells, whereas rLIPLD2 was inactive. The purified recombinant proteins and the venom are recognized by polyclonal anti-rLIPLD1 and rLIPLD2 sera produced in animals and conferred immunoprotection against the venom. These new isoforms reinforce the importance of the multigene family of phospholipases-D present in Loxosceles spiders. A highly immunogenic inactive isoform such as rLIPLD2 raises important expectation for its use as a potential immunogenic inducer of the immunoprotective response to the toxic action of the venom of Loxosceles laeta.  相似文献   

6.
A new phospholipase A2 with Gln at the site 49, abbreviated as Gln49-PLA2, has been purified from the venom of Agkistrodon blomhoffii ussurensis by using ion-exchange chromatography, gel filtration chromatography and reversed-phase HPLC, and behaves as a single-band on SDS-PAGE. Its molecular weight is 13881.85+/-0.33 Da given by mass spectrometry and pI is about 8.56 given by isoelectric focusing. Gln49-PLA2 does not show phospholipase A2 and hemorrhagic activity, whereas shows weak toxic and apparent anticoagulant activity. Based on the N-terminal sequencing and peptide mass fingerprint analysis, Gln49-PLA2 cDNA has been cloned by means of RT-PCR. Gln49-PLA2 consists of 122 amino acid residues and has the structural features of class II of snake venom phospholipase A2.  相似文献   

7.
An anticoagulant factor with phospholipase A2 activity has been isolated from Vipera berus venom. Phospholipase activity was studied on platelet phospholipid and on brain cephalin. The venom factor showed a potent anticoagulant activity: 1 mug impaired the clotting of 1 ml of citrated recalcified platelet-poor plasma. The anticoagulant inhibited clotting by antagonism to phospholipid. The antagonism constant (Kan = 6.8-10(-9) M) demonstrated the high affinity of the inhibitor for phospholipid. As with other phospholipases A2, the venom factor was thermoresistant but very sensitive to photo-oxidation. Both activities (anticoagulant activity and phospholipase activity) were not markedly dissociated by either denaturation or neutralization processes. Slightly different curves of photo-oxidative inactivation of both activities suggested the presence, on the molecule, of two very close sites responsible for phospholipase and anticoagulant activities. The inhibitor effect on coagulation was independent of the hydrolysis process. In fact, lysoderivatives and fatty acids, resulting from complete hydrolysis with the venom factor, were as active as the native phospholipids. Moreover phospholipase A2 from other viperidae venom, which did not have anticoagulant activity, produced similarly active lysoderivatives. This showed that the cleavage of the beta-acyl bond does not interfere with the activity of phospholipid. A possible mechanism of clotting inhibition by the venom factor was proposed. Owing to its high affinity for phospholipid, the inhibitor would complex phospholipid at its protein binding site impairing the normal arrangement of coagulation protein factors and, consequently, their activation. The positive charges of the inhibitor (pI = 9.2) could bind with phosphoryl or carboxyl groups of phospholipid, making them unavailable for protein binding. The complex formation involves a loss of dissociating capacity of the enzyme towards its substrate. This required an additional interaction of the inhibitor with a coagulation protein factor. The inhibitor could be removed from the complex by specific antibodies, permitting recovery of normal phospholipid-protein interaction. The role of calcium in the complex has not yet been elucidated. This venom factor affords a useful tool for investigating the phospholipid-clotting protein interaction.  相似文献   

8.
蜘蛛抗菌肽研究进展   总被引:2,自引:0,他引:2  
唐兴  陈连水  李江 《生命科学》2014,(10):1090-1095
蜘蛛活性多肽研究主要集中于蜘蛛毒液中作用于离子通道的神经毒素多肽。但近年来,一些蜘蛛抗菌肽不断被分离纯化,其结构和抗菌活性也被广泛深入研究,这将成为蜘蛛活性多肽研究领域的一个新热点。在蜘蛛毒液和血液中,存在不同种类的抗菌肽,其多肽长度、结构、抗菌作用各不相同。而且,有些抗菌肽甚至具有抗肿瘤作用。概述了蜘蛛抗菌肽在结构和功能方面的研究进展。  相似文献   

9.
Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies.  相似文献   

10.
Brown spider bites are associated with lesions including dermonecrosis, gravitational spreading and a massive inflammatory response, along with systemic problems that may include hematological disturbances and renal failure. The mechanisms by which the venom exerts its noxious effects are currently under investigation. It is known that the venom contains a major toxin (dermonecrotic toxin, biochemically a phospholipase D) that can experimentally induce dermonecrosis, inflammatory response, animal mortality and platelet aggregation. Herein, we describe cloning, heterologous expression, purification and functionality of a novel isoform of the 33 kDa dermonecrotic toxin. Circular dichroism analysis evidenced correct folding for the toxin. The recombinant toxin was recognized by whole venom serum antibodies and by a specific antibody to a previously described dermonecrotic toxin. The identified toxin was found to display phospholipase activity and dermonecrotic properties. Additionally, the toxin caused a massive inflammatory response in rabbit skin dermis, evoked platelet aggregation, increased vascular permeability, caused edema and death in mice. These characteristics in combination with functional studies for other dermonecrotic toxins illustrate that a family of dermonecrotic toxins exists, and includes a novel member with high activity that may be useful for future structural and functional studies.  相似文献   

11.
Gao L  Yu S  Wu Y  Shan B 《DNA and cell biology》2007,26(7):485-489
The purpose of this study was to examine the effects of antitumor activity of the venom from the spider Macrothele raven (Araneae, Hexathelidae) on the human breast carcinoma cell line, MCF-7. The spider venom affected cell viability in a dose- and time-dependent manner as observed by [(3)H]-methyl thymidine incorporation assay. Cytotoxicity changes in MCF-7 cells caused by the spider venom at concentrations of 10, 20, and 40 mug/mL were determined by lactate dehydrogenase release assay. Flow cytometry showed that the spider venom induced apoptosis and necrosis of MCF-7 cells at these concentrations. MCF-7 cells treated with spider venom were accumulated on the G(2)/M and G(0)/G(1) phases. In addition, Western blotting analysis indicated that one of the pharmacological mechanisms of spider venom was to activate the expression of p21. In vivo examination of the inhibition of tumor growth in nude mice by the spider venom (at concentrations of 1.6, 1.8, and 2.0 mug/g mice) revealed that tumor size significantly decreased compared to controls by 21 days of treatment and at all points of analysis thereafter for 7 weeks (p < 0.01). We thus propose that the in vivo and in vitro effects of the spider venom can be possibly estimated.  相似文献   

12.
From the acidic components of Bungarus fasciatus venom, a very small amount (0.16%) of a novel phospholipase A2 was obtained. Both neurotoxicity and enzyme activity were found to be lacking. Amino acid sequence study showed that it has a normal backbone of group I snake venom phospholipase A2 with 118 amino acid residues. The lack of enzyme activity was attributed to its mutation of the indispensable Asp residue to an Ala residue, i.e., the usual His-Asp47 turned out to be His-Ala47. This is the eighth isoform of phospholipase A2 found from the venom of Bungarus fasciatus. Examination of structural homology with three other isoforms revealed 66% similarity at most.  相似文献   

13.
A nontoxic phospholipase A2 was purified from the venom of Indian krait (Bungarus caeruleus) by a four-step procedure involving electrophoresis, gel filtration and ion-exchange chromatography. The recovery of the enzyme activity was 37% and the purified preparation was 38 times as active as the crude venom. The purified enzyme had a molecular weight of 12,500 and the optimum pH of 7.2. The enzyme showed higher specificity toward phosphatidylethanolamine than phosphatidylcholine. The preparation was not very labile to heat and its activity was dependent on the presence of divalent cations, calcium ions being the most effective activators. The enzyme was completely inhibited by iodoacetic acid but showed high stability against 8 M urea. Purified phospholipase A2 was nontoxic at an iv dose of 5 microgram/g mouse. The high specific activity, the high yield and the nontoxic nature of the enzyme indicate that the major form of phospholipase A2 in Bungarus caeruleus venom is not associated with any toxicity and has properties somewhat similar to that of phospholipase A2 from some other venoms.  相似文献   

14.
The bird spider Ornithoctonus huwena Wang is a very venomous spider in China. Several compounds with different types of biological activities have been identified previously from the venom of this spider. In this study, we have performed a proteomic and peptidomic analysis of the venom. The venom was preseparated into two parts: the venom proteins with molecular weight (MW) higher than 10,000 and the venom peptides with MW lower than 10 000. Using one-dimensional gel electrophoresis (1-DE), two-dimensional gel electrophoresis (2-DE), and mass spectrometry, 90 proteins were identified, including some important enzymes, binding proteins, and some proteins with significant biological functions. For venom peptides, a combination of cation-exchange and reversed-phase chromatography was employed. More than 100 components were detected by mass spectrometry, and 47 peptides were sequenced by Edman degradation. The peptides display structural and pharmacological diversity and share little sequence similarity with peptides from other animal venoms, which indicates the venom of O. huwena Wang is unique. The venom peptides can be classified into several superfamilies. Also it is revealed that gene duplication and focal hypermutation have taken place during the evolution of the spider toxins.  相似文献   

15.
The bee and cobra venom phospholipases A2 as well as partially acetylated cobra venom phospholipase A2 are studied for their effect on phospholipid composition of synaptosomes and their Mg2+- and Na+,K+-ATPase activity. It is established that these phospholipases induce the splitting of phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine, inhibition of the Na+,K+-ATPase activity and activation of Mg2+-ATPase. Bee venom phospholipase A2 is more effective than cobra venom phospholipase A2, the both phospholipases splitting phosphatidylethanolamine most intensively. The ATPase activity may be partially or completely restored by exogenic phosphatidylcholine and phosphatidylserine; exogenic phosphatidylethanolamine is not efficient in this respect.  相似文献   

16.
1. The enzymatic, hemorrhagic, procoagulant and anticoagulant activities of venoms of some animals including snakes, lizards, toads, scorpions, spider, wasps, bees and ants were compared.2. Snake venom was the richest source of enzymes among the animal venoms. Most other animal venoms were devoid of phosphodiesterase, l-amino acid oxidase, alkaline phosphomonoesterase and acetylcholinesterase activities and only a few exhibited arginine ester hydrolase activity. These venoms, however, exhibited wide ranges of protease, 5'-nucleotidase and hyaluronidase activities. Most of the animal venoms examined exhibited some phospholipase A activity.3. Other than snake venoms, only venoms of the toad Bufo calamita and the lizards were hemorrhagic, and only venoms of the social wasps, social bees and harvester ant exhibited strong anticoagulant activity. Procoagulant activity occurs only in snake venoms.  相似文献   

17.
Gao L  Shen JB  Sun J  Shan BE 《生理学报》2007,59(1):58-62
本文研究了雷氏大疣蛛毒液对人肝癌细胞株HepG2增殖抑制作用及其分子机制。采用XTT法观察到雷氏大疣蛛毒液剂量依赖抑制HepG2细胞增殖;流式细胞仪检测发现,经过雷氏大疣蛛毒液作用的HepG2细胞周期发生明显的选择性改变;RT-PCR方法检测到p21基因表达增强;Western blot检测发现,p21蛋白表达增加。结果提示,雷氏大疣蛛毒液抑制人肝癌细胞HepG2增殖的可能机制之一是使p21基因和蛋白表达增加,G2IM细胞周期被阻滞,从而诱导细胞凋亡。  相似文献   

18.
Malayan cobra (Naja naja sputatrix) venom was found to exhibit an in vitro anticoagulant activity that was much stronger than most common cobra (genus Naja) venoms. The most potent anticoagulants of the venom are two lethal phospholipase A2 enzymes with pI's of 6.15 and 6.20, respectively. The anticoagulant activity of the venom is due to the synergistic effect of the venom phospholipase A2 enzymes and polypeptide anticoagulants. Bromophenacylation of the two phospholipase A2 enzymes reduced their enzymatic activity with a concomitant drop in both the lethal and anticoagulant activities.  相似文献   

19.
The interaction of iodine labelled cytotoxin of the middle-asian cobra venom with erythrocyte membranes has been studied. The pretreatment of erythrocytes by cytotoxin results in the sensitivity to the lytic action of pure phospholipase A2 of the same venom. Using I-labelled serum albumin it has been proved that cytotoxin promotes the binding of acid proteins on the membrane such as phospholipase A2 interacted with it synergetically. In the course of study of cytotoxin effect on the time of adhesion hemispheres of artificial bilayer phospholipide membranes it has been established that due to the basic properties cytotoxin neutralizes the negative charge of the membrane surface. This effect of cytotoxin plays an important role in the potentiation of membrane action of phospholipase A2.  相似文献   

20.
The significance of the presence of free phosphoserine in living cells represents an intriguing problem. Its utilization for the synthesis of phosphoproteins and phospholipids has been ruled out. It is produced extensively by hydrolysis of phosphoproteins or phosphatidylserine since no phosphorylating enzyme for serine is present. So far the only significance of phosphoserine has been related to its participation in the exchange reaction with serine, the meaning of which is quite unclear. Evidence is presented that phosphoserine could modulate the activity of phospholipase A2, thus regulating the permeability properties of cellular and intracellular membranes which depend largely on phospholipase pattern. Phosphoserine in fact inhibits in a competitive way phospholipase A2 from cobra venom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号