首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. An increase in the NADPH/NADP(+) ratio has been reported to occur within minutes following the rise in glucose concentration in β-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP(+) by phosphorylation of NAD(+). NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in β-cells. We employed INS-1 832/13 cells, an insulin-secreting rat β-cell line, and isolated rodent islets to investigate the role of NADK in β-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP(+) ratio, suggesting that NADP(+) formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected β-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the β-cell.  相似文献   

2.
NAD kinase (NADK, EC 2.7.1.23) is the sole NADP(+)-biosynthetic enzyme that catalyzes phosphorylation of NAD(+) to yield NADP(+) using ATP as a phosphoryl donor, and thus, plays a vital role in the cell and represents a potentially powerful antimicrobial drug target. Although methods for expression and purification of human NADK have been previously established (Lerner et al. Biochem Biophys Res Commun 288:69-74, 2001), the purification procedure could be significantly improved. In this study, we improved the method for expression and purification of human NADK in Escherichia coli and obtained a purified homogeneous enzyme only through heat treatment and single column chromatography. Using the purified human NADK, we revealed a sigmoidal kinetic behavior toward ATP and the inhibitory effects of NADPH and NADH, but not of NADP(+), on the catalytic activity of the enzyme. These inhibitory effects provide insight into the regulation of intracellular NADPH synthesis. Furthermore, these attributes may provide a clue to design a novel drug against Mycobacterium tuberculosis in which this bacterial NADK is potently inhibited by NADP(+).  相似文献   

3.
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.  相似文献   

4.
As one of terminal electron acceptors in photosynthetic electron transport chain, NADP receives electron and H+ to synthesize NADPH, an important reducing energy in chlorophyll synthesis and Calvin cycle. NAD kinase (NADK), the catalyzing enzyme for the de novo synthesis of NADP from substrates NAD and ATP, may play an important role in the synthesis of NADPH. NADK activity has been observed in different sub-cellular fractions of mitochondria, chloroplast, and cytoplasm. Recently, two distinct NADK isoforms (NADK1 and NADK2) have been identified in Arabidopsis. However, the physiological roles of NADKs remain unclear. In present study, we investigated the physiological role of Arabidiposis NADK2. Sub-cellular localization of the NADK2–GFP fusion protein indicated that the NADK2 protein was localized in the chloroplast. The NADK2 knock out mutant (nadk2) showed obvious growth inhibition and smaller rosette leaves with a pale yellow color. Parallel to the reduced chlorophyll content, the expression levels of two POR genes, encoding key enzymes in chlorophyll synthesis, were down regulated in the nadk2 plants. The nadk2 plants also displayed hypersensitivity to environmental stresses provoking oxidative stress, such as UVB, drought, heat shock and salinity. These results suggest that NADK2 may be a chloroplast NAD kinase and play a vital role in chlorophyll synthesis and chloroplast protection against oxidative damage.  相似文献   

5.
Butyric acid (BA) induces jugular blood mitochondrial oxidative stress, whereas heme-induced oxidative stress was previously reported to inhibit SIRT1 in vitro. This would imply that BA-induced oxidative stress may similarly affect SIRT1. Here, we elucidated the BA effects on jugular blood cytosolic oxidative stress and SIRT1. Jugular blood cytosol was collected 0, 60, and 180 min after BA injection into rat gingival tissues and used throughout the study. Blood cytosolic oxidative stress induction, heme accumulation, NADPH oxidase (NOX) activation, nicotinamide adenine dinucleotide (NAD+) and NADP pool levels, NAD kinase (NADK), and SIRT1 amounts were determined. We found that BA retention in the gingival tissue induces blood cytosolic oxidative stress and heme accumulation which we correlated to both NOX activation and NADP pool increase. Moreover, we showed that BA-related NADP pool build-up is associated with NADK increase which we suspect decreased NAD+ levels and consequentially lowered SIRT1 amounts in the rat blood cytosol.  相似文献   

6.
7.
The chloroplastic NAD kinase (NADK2) is reported to stimulate carbon and nitrogen assimilation in Arabidopsis (Arabidopsis thaliana), which is vulnerable to high light. Since rice (Oryza sativa) is a monocotyledonous plant that can adapt to high light, we studied the effects of NADK2 expression in rice by developing transgenic rice plants that constitutively expressed the Arabidopsis chloroplastic NADK gene (NK2 lines). NK2 lines showed enhanced activity of NADK and accumulation of the NADP(H) pool, while intermediates of NAD derivatives were unchanged. Comprehensive analysis of the primary metabolites in leaves using capillary electrophoresis mass spectrometry revealed elevated levels of amino acids and several sugar phosphates including ribose-1,5-bisphosphate, but no significant change in the levels of the other metabolites. Studies of chlorophyll fluorescence and gas change analyses demonstrated greater electron transport and CO2 assimilation rates in NK2 lines, compared to those in the control. Analysis of oxidative stress response indicated enhanced tolerance to oxidative stress in these transformants. The results suggest that NADP content plays a critical role in determining the photosynthetic electron transport rate in rice and that its enhancement leads to stimulation of photosynthesis metabolism and tolerance of oxidative damages.NADP is a ubiquitous coenzyme, required in various metabolic processes, since these metabolites carry electrons through the reversible conversion between oxidized (NAD+, NADP+) and reduced (NADH, NADPH) forms in all organisms. NAD is highly oxidized and is involved primarily in intracellular catabolic reactions, whereas NADP is predominantly found in its reduced form and participates in anabolic reactions and defense against oxidative stress (Ziegler, 2000; Noctor et al., 2006; Pollak et al., 2007a). Since NAD(H) and NADP(H) play a variety of distinct physiological roles, the regulation of the NAD(H)/NADP(H) balance is essential for cell survival (Kawai and Murata, 2008; Hashida et al., 2009).One of the key enzymes that regulates NAD(H)/NADP(H) balance is NAD kinase (NADK; EC 2.7.1.23), which catalyzes NAD phosphorylation in the presence of ATP. The genes encoding NADK were cloned recently from all organisms investigated to date, except for Chlamydia trachomatis (Kawai and Murata, 2008). Only a single gene encoding NADK has been found in some bacteria and mammals (Kawai and Murata, 2008). In contrast, NADK activity was detected in not only the cytosol but also organelles in yeast and plant (Jarrett et al., 1982; Simon et al., 1982; Dieter and Marme, 1984; Iwahashi and Nakamura, 1989; Iwahashi et al., 1989), and three genes including cytosol-type and organelle-type NADK have been cloned in yeast (Kawai et al., 2001; Outten and Culotta, 2003) and plants (Turner et al., 2004, 2005).In Arabidopsis (Arabidopsis thaliana), one of the NADK isoforms is localized in the chloroplast (NADK2; Chai et al., 2005), the others are localized in the cytosol (NADK1 and NADK3; Chai et al., 2006). Analysis of Arabidopsis mutants revealed low chlorophyll (chl) content, low photosynthetic activity, growth inhibition, and hypersensitivity to environmental stresses in the nadk2 knockout mutant (Chai et al., 2005; Takahashi et al., 2006), whereas the nadk1 knockout mutant and the nadk3 knockout mutant did not show a significant phenotype, except for sensitivity to oxidative stress (Berrin et al., 2005; Chai et al., 2006). Moreover, the major part of NADP(H) biosynthesis in photosynthetic organ appears to be attributable to NADK2, because NADK and NADP(H) were strictly decreased in leaves of the nadk2 knockout mutant (Chai et al., 2005; Takahashi et al., 2006). In the plant cell, NADP is mainly located in the chloroplast (Heber and Santarius, 1965; Wigge et al., 1993), where NADP+ functions as the final electron acceptor of the photosynthetic electron transport. The reducing energy obtained is not only supplied for Calvin cycle, nitrogen assimilation, lipid and chl metabolism, but also play a crucial role in maintaining redox homeostasis through the regulation of producing and consuming reactive oxygen species (ROS) in the plant cell (Noctor, 2006; Noctor et al., 2006). Accordingly, these evidences indicate that chloroplastic NADK2 plays a central role in plant metabolism and stress tolerance through homeostasis of ROS as regulator of NADP/NAD balance.Since the alteration of NAD/NADP balance affects metabolism and ROS homeostasis, manipulation of NADK can be an attractive target for the engineering of plant metabolism. It was reported that overexpression of NADK causes perturbation of NADP(H) pool and has positive effects on stress tolerance or growth in various living things. In Asperadium nidulans, overexpression of NADH kinase improves the growth efficiency of the cell (Panagiotou et al., 2009). Overexpression of NADK in human HEK293 cells causes 4-to 5-fold increase of NADPH concentration and provides moderate protection against oxidative stress (Pollak et al., 2007b). Recently, we evaluated effects of the enhanced NADP(H) content in Arabidopsis by generating NADK2-overexpressing plants (Takahashi et al., 2009). Our results indicated that enhanced NADP(H) production by NADK2 overexpression promoted nitrogen assimilation and resulted in accumulation of metabolites associated with the Calvin cycle, accompanied by increased activity of Rubisco. Together, these studies demonstrated the potential use of NADK as candidate gene in promoting primary metabolism and/or stress tolerance in transgenic plants.Rice (Oryza sativa) is not only the primary crop for more than half of the world''s population, but also a model monocot system. Rice can adapt to more strong light intensity than Arabidopsis, because rice is a sun plant, whereas Arabidopsis is a shade plant. Therefore, it is possible that effects of an increased NADP(H) content could be more significant in rice plant than in Arabidopsis, due to a higher ability to manage reductive energy involved in NADP as an electron carrier. In this article, we describe the generation and characterization of transgenic rice plants expressing an Arabidopsis chloroplastic NADK (AtNADK2), under the control of the maize (Zea mays) ubiquitin promoter. We named the rice plant as NK2. We found that pleiotropic effects on primary metabolism in NK2 rice were similar to the result obtained in NADK2-overexpressing Arabidopsis plants. However, stimulation of carbon fixation and nitrogen assimilation were observed in NK2 rice, accompanying with significant increases in electron transport and CO2 assimilation rates, unlike results of the previous study of Arabidopsis. Interestingly, the NK2 lines also showed enhanced tolerance to oxidative stress.  相似文献   

8.
Oxidized nicotinamide adenine dinucleotide (NAD(+)) kinase (NADK, E.C. 2.7.1.23) plays an instrumental role in cellular metabolism. Here we report on a blue native polyacrylamide gel electrophoretic technique that allows the facile detection of this enzyme. The product, oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), formed following the reaction of NADK with NAD(+) and adenosine 5'-triphosphate was detected with the aid of glucose-6-phosphate dehydrogenase or NADP(+)-isocitrate dehydrogenase, iodonitrotetrazolium chloride, and phenazine methosulfate. The bands at the respective activity sites were excised and subjected to native and denaturing two-dimensional electrophoresis for the determination of protein levels. Hence this novel electrophoretic method allows the easy detection of NADK, a critical enzyme involved in pyridine homeostasis. Furthermore, this technique allowed the monitoring of the activity and expression of this kinase in various biological systems.  相似文献   

9.
NAD激酶能催化NAD生成NADP。本研究采用PCR技术从嗜热脂肪地芽孢杆菌基因组中获得NAD激酶基因,以pET30a(+)为表达载体、E.coliBL21(DE3)为宿主菌,实现其在大肠杆菌中异源表达,并进行酶学性质研究。结果显示,嗜热脂肪地芽孢杆菌中NAD激酶编码基因大小为816bp,酶分子量大约为35kD。酶学性质分析表明,来源于嗜热脂肪地芽孢杆菌的NAD激酶最适反应温度和pH分别为35℃、pH7.5,在35qC中保温2h后仍能保持80%左右的活性。Mn2+、Ca2+对该酶有较强的激活作用,在最适反应条件下该酶的比活力为4.43U/mg。动力学性质分析结果显示NAD激酶对底物NAD催化的k和圪。,分别为1.46mmol/L和0.25tzmol/(L·min)。NAD激酶在大肠杆菌的异源表达为以NAD为底物生物合成NADP提供了更多生物资源。  相似文献   

10.
11.
外源IAA 处理可以显著增加小麦胚芽鞘细胞NAD 激酶的催化活性,钙离子可以增强IAA 的作用效果,而钙离子通道抑制剂LaCl3 则起强烈的抑制作用,但在存在钙离子的条件下,这种抑制作用可以被钙离子载体A23187 消除;钙调蛋白能够在离体条件下激活经过DEAE 纤维素柱纯化的小麦胚芽鞘NAD激酶,经过IAA 处理的胚芽鞘细胞中能够刺激NAD 激酶活性的钙调蛋白含量明显增加,IAA 的这一作用受LaCl3 的抑制。上述结果表明Ca2+ /CaM 复合物介导了生长素对小麦胚芽鞘细胞NAD 激酶活性的促进作用。  相似文献   

12.
13.
Mitochondria isolated from human term placenta were able to form citrate from malate as the only added substrate. While mitochondria were incubated in the presence of Mn2+ the citrate formation was stimulated significantly both by NAD+ and NADP+ and was inhibited by hydroxymalonate, arsenite, butylmalonate and rotenone. It is concluded that NAD(P)-linked malic enzyme is involved in the conversion of malate to citrate in these mitochondria. It has also been shown that the conversion of cholesterol to progesterone by human term placental mitochondria incubated in the presence of malate was stimulated by NAD+ and NADP+ and inhibited by arsenite and fluorocitrate. This suggests that the stimulation by malate of progesterone biosynthesis depends not only on the generation of NADPH by NAD(P)-linked malic enzyme, but also on NADPH formed during further metabolism of pyruvate to isocitrate which is in turn efficiently oxidized by NADP+-linked isocitrate dehydrogenase.  相似文献   

14.
The pyridine nucleotides NAD and NADP play vital roles in metabolic conversions as signal transducers and in cellular defence systems. Both coenzymes participate as electron carriers in energy transduction and biosynthetic processes. Their oxidized forms, NAD+ and NADP+, have been identified as important elements of regulatory pathways. In particular, NAD+ serves as a substrate for ADP-ribosylation reactions and for the Sir2 family of NAD+-dependent protein deacetylases as well as a precursor of the calcium mobilizing molecule cADPr (cyclic ADP-ribose). The conversions of NADP+ into the 2'-phosphorylated form of cADPr or to its nicotinic acid derivative, NAADP, also result in the formation of potent intracellular calcium-signalling agents. Perhaps, the most critical function of NADP is in the maintenance of a pool of reducing equivalents which is essential to counteract oxidative damage and for other detoxifying reactions. It is well known that the NADPH/NADP+ ratio is usually kept high, in favour of the reduced form. Research within the past few years has revealed important insights into how the NADPH pool is generated and maintained in different subcellular compartments. Moreover, tremendous progress in the molecular characterization of NAD kinases has established these enzymes as vital factors for cell survival. In the present review, we summarize recent advances in the understanding of the biosynthesis and signalling functions of NAD(P) and highlight the new insights into the molecular mechanisms of NADPH generation and their roles in cell physiology.  相似文献   

15.
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6–2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.  相似文献   

16.
17.
The concentration of carbon dioxide (CO2) in the atmosphere is projected to double by the end of the 21st century. In C3 plants, elevated CO2 concentrations promote photosynthesis but inhibit the assimilation of nitrate into organic nitrogen compounds. Several steps of nitrate assimilation depend on the availability of ATP and sources of reducing power, such as nicotinamide adenine dinucleotide phosphate (NADPH). Plastid‐localised NAD kinase 2 (NADK2) plays key roles in increasing the ATP/ADP and NADP(H)/NAD(H) ratios. Here we examined the effects of NADK2 overexpression on primary metabolism in rice (Oryza sativa) leaves in response to elevated CO2. By using capillary electrophoresis mass spectrometry, we showed that the primary metabolite profile of NADK2‐overexpressing plants clearly differed from that of wild‐type plants under ambient and elevated CO2. In NADK2‐overexpressing leaves, expression of the genes encoding glutamine synthetase and glutamate synthase was up‐regulated, and the levels of Asn, Gln, Arg, and Lys increased in response to elevated CO2. The present study suggests that overexpression of NADK2 promotes the biosynthesis of nitrogen‐rich amino acids under elevated CO2.  相似文献   

18.
NADPH is the key cofactor in L-isoleucine (Ile) biosynthetic pathway. To increase the Ile biosynthesis in Corynebacterium glutamicum ssp. lactofermentum JHI3-156, NADPH supply needs to be enhanced. Here NAD kinase, the key enzyme for the de novo biosynthesis of NADP(+) and NADPH, were cloned and expressed in JHI3-156, and their influences on Ile production were analysed. Meanwhile, enzyme properties of NAD kinase from JHI3-156 (CljPpnK) were compared with that from C. glutamicum ssp. lactofermentum ATCC 13869 (ClPpnK). Four variations existed between CljPpnK and ClPpnK. Both PpnKs were poly(P)/ATP-dependent NAD kinases that used ATP as the preferred phosphoryl donor and NAD(+) as the preferred acceptor. CljPpnK exhibited a higher activity and stability than ClPpnK and less sensitivity towards the effectors NADPH, NADP(+), and NADH, partly due to the variations between them. The S57P variation decreased their activity. Expression of CljppnK and ClppnK in JHI3-156 increased the ATP-NAD(+) kinase activity by 69- and 47-fold, respectively, the intracellular NADP(+) concentration by 36% and 101%, respectively, the NADPH concentration by 95% and 42%, respectively, and Ile production by 37% and 24%, respectively. These results suggest that overexpressing NAD kinase is a useful metabolic engineering strategy to improve NADPH supply and isoleucine biosynthesis.  相似文献   

19.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

20.
We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinant Saccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD+ in S. cerevisiae and thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD+ by NADPH and by NADH in the presence of NADP+, which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD+, NADPH, and NADP+ were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号